David G Zacharias, Timothy J Nelson, Paul S Mueller, C Christopher Hook
{"title":"新治疗技术的阻抗:以干细胞为例。","authors":"David G Zacharias, Timothy J Nelson, Paul S Mueller, C Christopher Hook","doi":"10.1111/j.1752-8062.2012.00434.x","DOIUrl":null,"url":null,"abstract":"<p><p>Embryonic stem cell (ES) technology has advanced considerably within the past three decades and has gained prominent distinction within the emerging field of regenerative medicine. As it now enters the nascent stages of clinical application, many hopes and expectations arise along with questions as to where the technology will go. This paper evaluates the technical and practical obstacles that must be overcome before it can fully translate into the clinical context, the existence of strong opposition to the technology, political and legal barriers that have impeded its progression, and the role of healthcare reform in creating new social and economic priorities. In contrast to the technological imperative, a driving force seeking to implement the most recent scientific advances into medical practice, we refer to such translational obstacles as \"technological impedance.\" Rather than expending inordinate effort to preserve existing systems that continue to possess major hurdles, we advocate fostering interdisciplinary approaches in the development of new generation platforms and embracing disruptive innovations that create solutions to technological impedance and move us forward in healthcare delivery. Clin Trans Sci 2012; Volume 5: 422-427.</p>","PeriodicalId":501617,"journal":{"name":"Clinical and Translational Science","volume":" ","pages":"422-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1752-8062.2012.00434.x","citationCount":"1","resultStr":"{\"title\":\"Impedance of novel therapeutic technologies: the case of stem cells.\",\"authors\":\"David G Zacharias, Timothy J Nelson, Paul S Mueller, C Christopher Hook\",\"doi\":\"10.1111/j.1752-8062.2012.00434.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Embryonic stem cell (ES) technology has advanced considerably within the past three decades and has gained prominent distinction within the emerging field of regenerative medicine. As it now enters the nascent stages of clinical application, many hopes and expectations arise along with questions as to where the technology will go. This paper evaluates the technical and practical obstacles that must be overcome before it can fully translate into the clinical context, the existence of strong opposition to the technology, political and legal barriers that have impeded its progression, and the role of healthcare reform in creating new social and economic priorities. In contrast to the technological imperative, a driving force seeking to implement the most recent scientific advances into medical practice, we refer to such translational obstacles as \\\"technological impedance.\\\" Rather than expending inordinate effort to preserve existing systems that continue to possess major hurdles, we advocate fostering interdisciplinary approaches in the development of new generation platforms and embracing disruptive innovations that create solutions to technological impedance and move us forward in healthcare delivery. Clin Trans Sci 2012; Volume 5: 422-427.</p>\",\"PeriodicalId\":501617,\"journal\":{\"name\":\"Clinical and Translational Science\",\"volume\":\" \",\"pages\":\"422-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/j.1752-8062.2012.00434.x\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1752-8062.2012.00434.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/j.1752-8062.2012.00434.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/6/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Impedance of novel therapeutic technologies: the case of stem cells.
Embryonic stem cell (ES) technology has advanced considerably within the past three decades and has gained prominent distinction within the emerging field of regenerative medicine. As it now enters the nascent stages of clinical application, many hopes and expectations arise along with questions as to where the technology will go. This paper evaluates the technical and practical obstacles that must be overcome before it can fully translate into the clinical context, the existence of strong opposition to the technology, political and legal barriers that have impeded its progression, and the role of healthcare reform in creating new social and economic priorities. In contrast to the technological imperative, a driving force seeking to implement the most recent scientific advances into medical practice, we refer to such translational obstacles as "technological impedance." Rather than expending inordinate effort to preserve existing systems that continue to possess major hurdles, we advocate fostering interdisciplinary approaches in the development of new generation platforms and embracing disruptive innovations that create solutions to technological impedance and move us forward in healthcare delivery. Clin Trans Sci 2012; Volume 5: 422-427.