{"title":"大脑过氧化氢酶水平通过应变、发育和慢性酒精挑战保持不变。","authors":"Dennis E Rhoads, Cherly Contreras, Salma Fathalla","doi":"10.1155/2012/572939","DOIUrl":null,"url":null,"abstract":"<p><p>Catalase (EC 1.11.1.6) oxidizes ethanol to acetaldehyde within the brain and variations in catalase activity may underlie some consequences of ethanol consumption. The goals of this study were to measure catalase activity in subcellular fractions from rat brain and to compare the levels of this enzyme in several important settings. In the first series of studies, levels of catalase were compared between juvenile and adult rats and between the Long-Evans (LE) and Sprague-Dawley (SD) strains. Levels of catalase appear to have achieved the adult level by the preadolescent period defined by postnatal age (P, days) P25-P28, and there were no differences between strains at the developmental stages tested. Thus, variation in catalase activity is unlikely to be responsible for differences in how adolescent and adult rats respond to ethanol. In the second series of studies, periadolescent and adult rats were administered ethanol chronically through an ethanol-containing liquid diet. Diet consumption and blood ethanol concentrations were significantly higher for periadolescent rats. Catalase activities remained unchanged following ethanol consumption, with no significant differences within or between strains. Thus, the brain showed no apparent adaptive changes in levels of catalase, even when faced with the high levels of ethanol consumption characteristic of periadolescent rats.</p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2012 ","pages":"572939"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/572939","citationCount":"10","resultStr":"{\"title\":\"Brain Levels of Catalase Remain Constant through Strain, Developmental, and Chronic Alcohol Challenges.\",\"authors\":\"Dennis E Rhoads, Cherly Contreras, Salma Fathalla\",\"doi\":\"10.1155/2012/572939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Catalase (EC 1.11.1.6) oxidizes ethanol to acetaldehyde within the brain and variations in catalase activity may underlie some consequences of ethanol consumption. The goals of this study were to measure catalase activity in subcellular fractions from rat brain and to compare the levels of this enzyme in several important settings. In the first series of studies, levels of catalase were compared between juvenile and adult rats and between the Long-Evans (LE) and Sprague-Dawley (SD) strains. Levels of catalase appear to have achieved the adult level by the preadolescent period defined by postnatal age (P, days) P25-P28, and there were no differences between strains at the developmental stages tested. Thus, variation in catalase activity is unlikely to be responsible for differences in how adolescent and adult rats respond to ethanol. In the second series of studies, periadolescent and adult rats were administered ethanol chronically through an ethanol-containing liquid diet. Diet consumption and blood ethanol concentrations were significantly higher for periadolescent rats. Catalase activities remained unchanged following ethanol consumption, with no significant differences within or between strains. Thus, the brain showed no apparent adaptive changes in levels of catalase, even when faced with the high levels of ethanol consumption characteristic of periadolescent rats.</p>\",\"PeriodicalId\":11835,\"journal\":{\"name\":\"Enzyme Research\",\"volume\":\"2012 \",\"pages\":\"572939\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/572939\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/572939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/572939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Brain Levels of Catalase Remain Constant through Strain, Developmental, and Chronic Alcohol Challenges.
Catalase (EC 1.11.1.6) oxidizes ethanol to acetaldehyde within the brain and variations in catalase activity may underlie some consequences of ethanol consumption. The goals of this study were to measure catalase activity in subcellular fractions from rat brain and to compare the levels of this enzyme in several important settings. In the first series of studies, levels of catalase were compared between juvenile and adult rats and between the Long-Evans (LE) and Sprague-Dawley (SD) strains. Levels of catalase appear to have achieved the adult level by the preadolescent period defined by postnatal age (P, days) P25-P28, and there were no differences between strains at the developmental stages tested. Thus, variation in catalase activity is unlikely to be responsible for differences in how adolescent and adult rats respond to ethanol. In the second series of studies, periadolescent and adult rats were administered ethanol chronically through an ethanol-containing liquid diet. Diet consumption and blood ethanol concentrations were significantly higher for periadolescent rats. Catalase activities remained unchanged following ethanol consumption, with no significant differences within or between strains. Thus, the brain showed no apparent adaptive changes in levels of catalase, even when faced with the high levels of ethanol consumption characteristic of periadolescent rats.