使用零斜率比较解释缓和回归中有序或连续变量的相互作用:教程,新扩展和癌症症状应用。

Richard B Francoeur
{"title":"使用零斜率比较解释缓和回归中有序或连续变量的相互作用:教程,新扩展和癌症症状应用。","authors":"Richard B Francoeur","doi":"10.1504/IJSSS.2011.038937","DOIUrl":null,"url":null,"abstract":"<p><p>Moderated multiple regression (MMR) can model behaviours as multiple interdependencies within a system. When MMR reveals a statistically significant interaction term composed of ordinal or continuous variables, a follow-up procedure is required to interpret its nature and strength across the primary predictor (x) range. A follow-up procedure should probe when interactions reveal magnifier (or aggravating) effects and/or buffering (or relieving) effects that qualify the x-y relationship, especially when interpreting multiple interactions, or a complex interaction involving curvilinearity or multiple co-moderator variables. After a tutorial on the zero slope comparison (ZSC), a rarely used, quick approach for interpreting linear interactions between two ordinal or continuous variables, I derive novel extensions to interpret curvilinear interactions between two variables and linear interactions among three variables. I apply these extensions to interpret how co-occurring cancer symptoms at different levels influence one another - based on their interaction - to predict feelings of sickness malaise.</p>","PeriodicalId":89681,"journal":{"name":"International journal of society systems science","volume":"3 1-2","pages":"137-158"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJSSS.2011.038937","citationCount":"6","resultStr":"{\"title\":\"Interpreting interactions of ordinal or continuous variables in moderated regression using the zero slope comparison: tutorial, new extensions, and cancer symptom applications.\",\"authors\":\"Richard B Francoeur\",\"doi\":\"10.1504/IJSSS.2011.038937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Moderated multiple regression (MMR) can model behaviours as multiple interdependencies within a system. When MMR reveals a statistically significant interaction term composed of ordinal or continuous variables, a follow-up procedure is required to interpret its nature and strength across the primary predictor (x) range. A follow-up procedure should probe when interactions reveal magnifier (or aggravating) effects and/or buffering (or relieving) effects that qualify the x-y relationship, especially when interpreting multiple interactions, or a complex interaction involving curvilinearity or multiple co-moderator variables. After a tutorial on the zero slope comparison (ZSC), a rarely used, quick approach for interpreting linear interactions between two ordinal or continuous variables, I derive novel extensions to interpret curvilinear interactions between two variables and linear interactions among three variables. I apply these extensions to interpret how co-occurring cancer symptoms at different levels influence one another - based on their interaction - to predict feelings of sickness malaise.</p>\",\"PeriodicalId\":89681,\"journal\":{\"name\":\"International journal of society systems science\",\"volume\":\"3 1-2\",\"pages\":\"137-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJSSS.2011.038937\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of society systems science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSSS.2011.038937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of society systems science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSSS.2011.038937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

适度多元回归(MMR)可以将行为建模为系统中的多个相互依赖关系。当MMR显示由有序变量或连续变量组成的统计显著相互作用项时,需要后续程序来解释其在主要预测因子(x)范围内的性质和强度。后续程序应探测交互作用是否显示放大(或加重)效应和/或缓冲(或缓解)效应,从而限定x-y关系,特别是在解释多个交互作用或涉及曲线或多个共同调节变量的复杂交互作用时。零斜率比较(ZSC)是一种很少使用的解释两个有序或连续变量之间线性相互作用的快速方法,在学习了零斜率比较(ZSC)的教程之后,我推导了新的扩展来解释两个变量之间的曲线相互作用和三个变量之间的线性相互作用。我运用这些扩展来解释不同程度的共同发生的癌症症状是如何相互影响的——基于它们的相互作用——来预测疾病的感觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpreting interactions of ordinal or continuous variables in moderated regression using the zero slope comparison: tutorial, new extensions, and cancer symptom applications.

Moderated multiple regression (MMR) can model behaviours as multiple interdependencies within a system. When MMR reveals a statistically significant interaction term composed of ordinal or continuous variables, a follow-up procedure is required to interpret its nature and strength across the primary predictor (x) range. A follow-up procedure should probe when interactions reveal magnifier (or aggravating) effects and/or buffering (or relieving) effects that qualify the x-y relationship, especially when interpreting multiple interactions, or a complex interaction involving curvilinearity or multiple co-moderator variables. After a tutorial on the zero slope comparison (ZSC), a rarely used, quick approach for interpreting linear interactions between two ordinal or continuous variables, I derive novel extensions to interpret curvilinear interactions between two variables and linear interactions among three variables. I apply these extensions to interpret how co-occurring cancer symptoms at different levels influence one another - based on their interaction - to predict feelings of sickness malaise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信