Martin Haimerl, Mario Schubert, Melanie Wegner, Sabine Kling
{"title":"人体骨盆的解剖关系及其在配准技术中的应用。","authors":"Martin Haimerl, Mario Schubert, Melanie Wegner, Sabine Kling","doi":"10.3109/10929088.2012.711368","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge of consistent anatomical relationships is an important criterion for establishing registration procedures for orthopedic navigation systems. Based on an analysis of 420 CT data sets, we investigated whether a robust registration of the pelvis in a lateral decubitus position could be achieved based on anatomical relationships. For this purpose, we assessed basic statistics and variation in anatomical parameters. It was found that inter-teardrop and inter-fossa distances exhibit a high degree of consistency in pelvises of the same gender. Additionally, stable relationships were found between the anterior pelvic plane (APP) and other reference planes that rely on acetabular points instead of pubic points. Based on these results, a registration procedure for the pelvis was developed which uses only landmarks that are accessible intra-operatively from the ipsilateral side. The deviation between a standard APP registration and this new registration method was assessed. For a standard cup position (40° inclination, 15° anteversion), the resulting deviations were found to be 0.15 ± 2.86° for inclination and 0.27 ± 3.46° for anteversion. Of the registrations, 99% had cup positions within the Lewinnek safe zone. This shows that accurate lateral pelvis registration based on anatomical relationships is achievable.</p>","PeriodicalId":50644,"journal":{"name":"Computer Aided Surgery","volume":"17 5","pages":"232-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10929088.2012.711368","citationCount":"11","resultStr":"{\"title\":\"Anatomical relationships of human pelvises and their application to registration techniques.\",\"authors\":\"Martin Haimerl, Mario Schubert, Melanie Wegner, Sabine Kling\",\"doi\":\"10.3109/10929088.2012.711368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knowledge of consistent anatomical relationships is an important criterion for establishing registration procedures for orthopedic navigation systems. Based on an analysis of 420 CT data sets, we investigated whether a robust registration of the pelvis in a lateral decubitus position could be achieved based on anatomical relationships. For this purpose, we assessed basic statistics and variation in anatomical parameters. It was found that inter-teardrop and inter-fossa distances exhibit a high degree of consistency in pelvises of the same gender. Additionally, stable relationships were found between the anterior pelvic plane (APP) and other reference planes that rely on acetabular points instead of pubic points. Based on these results, a registration procedure for the pelvis was developed which uses only landmarks that are accessible intra-operatively from the ipsilateral side. The deviation between a standard APP registration and this new registration method was assessed. For a standard cup position (40° inclination, 15° anteversion), the resulting deviations were found to be 0.15 ± 2.86° for inclination and 0.27 ± 3.46° for anteversion. Of the registrations, 99% had cup positions within the Lewinnek safe zone. This shows that accurate lateral pelvis registration based on anatomical relationships is achievable.</p>\",\"PeriodicalId\":50644,\"journal\":{\"name\":\"Computer Aided Surgery\",\"volume\":\"17 5\",\"pages\":\"232-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10929088.2012.711368\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10929088.2012.711368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10929088.2012.711368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Anatomical relationships of human pelvises and their application to registration techniques.
Knowledge of consistent anatomical relationships is an important criterion for establishing registration procedures for orthopedic navigation systems. Based on an analysis of 420 CT data sets, we investigated whether a robust registration of the pelvis in a lateral decubitus position could be achieved based on anatomical relationships. For this purpose, we assessed basic statistics and variation in anatomical parameters. It was found that inter-teardrop and inter-fossa distances exhibit a high degree of consistency in pelvises of the same gender. Additionally, stable relationships were found between the anterior pelvic plane (APP) and other reference planes that rely on acetabular points instead of pubic points. Based on these results, a registration procedure for the pelvis was developed which uses only landmarks that are accessible intra-operatively from the ipsilateral side. The deviation between a standard APP registration and this new registration method was assessed. For a standard cup position (40° inclination, 15° anteversion), the resulting deviations were found to be 0.15 ± 2.86° for inclination and 0.27 ± 3.46° for anteversion. Of the registrations, 99% had cup positions within the Lewinnek safe zone. This shows that accurate lateral pelvis registration based on anatomical relationships is achievable.
期刊介绍:
The scope of Computer Aided Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotaxic procedures, surgery guided by ultrasound, image guided focal irradiation, robotic surgery, and other therapeutic interventions that are performed with the use of digital imaging technology.