遗书情绪分类的统计与相似方法。

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S8958
Kirk Roberts, Sanda M Harabagiu
{"title":"遗书情绪分类的统计与相似方法。","authors":"Kirk Roberts,&nbsp;Sanda M Harabagiu","doi":"10.4137/BII.S8958","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we report on the approaches that we developed for the 2011 i2b2 Shared Task on Sentiment Analysis of Suicide Notes. We have cast the problem of detecting emotions in suicide notes as a supervised multi-label classification problem. Our classifiers use a variety of features based on (a) lexical indicators, (b) topic scores, and (c) similarity measures. Our best submission has a precision of 0.551, a recall of 0.485, and a F-measure of 0.516.</p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"195-204"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S8958","citationCount":"10","resultStr":"{\"title\":\"Statistical and similarity methods for classifying emotion in suicide notes.\",\"authors\":\"Kirk Roberts,&nbsp;Sanda M Harabagiu\",\"doi\":\"10.4137/BII.S8958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we report on the approaches that we developed for the 2011 i2b2 Shared Task on Sentiment Analysis of Suicide Notes. We have cast the problem of detecting emotions in suicide notes as a supervised multi-label classification problem. Our classifiers use a variety of features based on (a) lexical indicators, (b) topic scores, and (c) similarity measures. Our best submission has a precision of 0.551, a recall of 0.485, and a F-measure of 0.516.</p>\",\"PeriodicalId\":88397,\"journal\":{\"name\":\"Biomedical informatics insights\",\"volume\":\"5 Suppl. 1\",\"pages\":\"195-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4137/BII.S8958\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical informatics insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/BII.S8958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S8958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们报告了我们为2011年i2b2自杀笔记情感分析共享任务开发的方法。我们将自杀遗书中的情绪检测问题作为一个有监督的多标签分类问题。我们的分类器使用基于(a)词法指标、(b)主题分数和(c)相似性度量的各种特征。我们最好的提交精度为0.551,召回率为0.485,f值为0.516。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Statistical and similarity methods for classifying emotion in suicide notes.

Statistical and similarity methods for classifying emotion in suicide notes.

In this paper we report on the approaches that we developed for the 2011 i2b2 Shared Task on Sentiment Analysis of Suicide Notes. We have cast the problem of detecting emotions in suicide notes as a supervised multi-label classification problem. Our classifiers use a variety of features based on (a) lexical indicators, (b) topic scores, and (c) similarity measures. Our best submission has a precision of 0.551, a recall of 0.485, and a F-measure of 0.516.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信