二元分类器和潜在序列模型用于自杀遗言中的情感检测。

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S8933
Colin Cherry, Saif M Mohammad, Berry de Bruijn
{"title":"二元分类器和潜在序列模型用于自杀遗言中的情感检测。","authors":"Colin Cherry, Saif M Mohammad, Berry de Bruijn","doi":"10.4137/BII.S8933","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes the National Research Council of Canada's submission to the 2011 i2b2 NLP challenge on the detection of emotions in suicide notes. In this task, each sentence of a suicide note is annotated with zero or more emotions, making it a multi-label sentence classification task. We employ two distinct large-margin models capable of handling multiple labels. The first uses one classifier per emotion, and is built to simplify label balance issues and to allow extremely fast development. This approach is very effective, scoring an F-measure of 55.22 and placing fourth in the competition, making it the best system that does not use web-derived statistics or re-annotated training data. Second, we present a latent sequence model, which learns to segment the sentence into a number of emotion regions. This model is intended to gracefully handle sentences that convey multiple thoughts and emotions. Preliminary work with the latent sequence model shows promise, resulting in comparable performance using fewer features.</p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"147-54"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409480/pdf/","citationCount":"0","resultStr":"{\"title\":\"Binary classifiers and latent sequence models for emotion detection in suicide notes.\",\"authors\":\"Colin Cherry, Saif M Mohammad, Berry de Bruijn\",\"doi\":\"10.4137/BII.S8933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper describes the National Research Council of Canada's submission to the 2011 i2b2 NLP challenge on the detection of emotions in suicide notes. In this task, each sentence of a suicide note is annotated with zero or more emotions, making it a multi-label sentence classification task. We employ two distinct large-margin models capable of handling multiple labels. The first uses one classifier per emotion, and is built to simplify label balance issues and to allow extremely fast development. This approach is very effective, scoring an F-measure of 55.22 and placing fourth in the competition, making it the best system that does not use web-derived statistics or re-annotated training data. Second, we present a latent sequence model, which learns to segment the sentence into a number of emotion regions. This model is intended to gracefully handle sentences that convey multiple thoughts and emotions. Preliminary work with the latent sequence model shows promise, resulting in comparable performance using fewer features.</p>\",\"PeriodicalId\":88397,\"journal\":{\"name\":\"Biomedical informatics insights\",\"volume\":\"5 Suppl. 1\",\"pages\":\"147-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409480/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical informatics insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/BII.S8933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S8933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了加拿大国家研究委员会向 2011 i2b2 NLP 挑战赛提交的关于遗书中情绪检测的论文。在这项任务中,自杀遗言的每个句子都标注了零个或多个情绪,因此是一项多标签句子分类任务。我们采用了两种能够处理多标签的不同大边际模型。第一个模型对每种情绪使用一个分类器,其目的是简化标签平衡问题,并实现极快的开发速度。这种方法非常有效,F-measure 为 55.22,在竞赛中名列第四,是不使用网络派生统计或重新标注训练数据的最佳系统。其次,我们提出了一个潜在序列模型,该模型通过学习将句子分割成若干情感区域。该模型旨在优雅地处理表达多种思想和情感的句子。使用潜序列模型的初步工作表明,使用较少的特征就能获得相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Binary classifiers and latent sequence models for emotion detection in suicide notes.

Binary classifiers and latent sequence models for emotion detection in suicide notes.

Binary classifiers and latent sequence models for emotion detection in suicide notes.

Binary classifiers and latent sequence models for emotion detection in suicide notes.

This paper describes the National Research Council of Canada's submission to the 2011 i2b2 NLP challenge on the detection of emotions in suicide notes. In this task, each sentence of a suicide note is annotated with zero or more emotions, making it a multi-label sentence classification task. We employ two distinct large-margin models capable of handling multiple labels. The first uses one classifier per emotion, and is built to simplify label balance issues and to allow extremely fast development. This approach is very effective, scoring an F-measure of 55.22 and placing fourth in the competition, making it the best system that does not use web-derived statistics or re-annotated training data. Second, we present a latent sequence model, which learns to segment the sentence into a number of emotion regions. This model is intended to gracefully handle sentences that convey multiple thoughts and emotions. Preliminary work with the latent sequence model shows promise, resulting in comparable performance using fewer features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信