结合词义特征对自杀笔记进行情感分类

Biomedical informatics insights Pub Date : 2012-01-01 Epub Date: 2012-01-30 DOI:10.4137/BII.S8960
Bart Desmet, Véronique Hoste
{"title":"结合词义特征对自杀笔记进行情感分类","authors":"Bart Desmet, Véronique Hoste","doi":"10.4137/BII.S8960","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes a system for automatic emotion classification, developed for the 2011 i2b2 Natural Language Processing Challenge, Track 2. The objective of the shared task was to label suicide notes with 15 relevant emotions on the sentence level. Our system uses 15 SVM models (one for each emotion) using the combination of features that was found to perform best on a given emotion. Features included lemmas and trigram bag of words, and information from semantic resources such as WordNet, SentiWordNet and subjectivity clues. The best-performing system labeled 7 of the 15 emotions and achieved an F-score of 53.31% on the test data.</p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"5 Suppl. 1","pages":"125-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409478/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining Lexico-semantic Features for Emotion Classification in Suicide Notes.\",\"authors\":\"Bart Desmet, Véronique Hoste\",\"doi\":\"10.4137/BII.S8960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper describes a system for automatic emotion classification, developed for the 2011 i2b2 Natural Language Processing Challenge, Track 2. The objective of the shared task was to label suicide notes with 15 relevant emotions on the sentence level. Our system uses 15 SVM models (one for each emotion) using the combination of features that was found to perform best on a given emotion. Features included lemmas and trigram bag of words, and information from semantic resources such as WordNet, SentiWordNet and subjectivity clues. The best-performing system labeled 7 of the 15 emotions and achieved an F-score of 53.31% on the test data.</p>\",\"PeriodicalId\":88397,\"journal\":{\"name\":\"Biomedical informatics insights\",\"volume\":\"5 Suppl. 1\",\"pages\":\"125-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409478/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical informatics insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/BII.S8960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S8960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了为 2011 年 i2b2 自然语言处理挑战赛第 2 赛道开发的自动情绪分类系统。共享任务的目标是在句子层面为自杀笔记标注 15 种相关情绪。我们的系统使用 15 个 SVM 模型(每种情绪一个模型),并使用在特定情绪上表现最佳的特征组合。这些特征包括词组和 trigram 词袋,以及来自 WordNet、SentiWordNet 和主观性线索等语义资源的信息。表现最好的系统标注了 15 种情绪中的 7 种,测试数据的 F 分数达到了 53.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Lexico-semantic Features for Emotion Classification in Suicide Notes.

This paper describes a system for automatic emotion classification, developed for the 2011 i2b2 Natural Language Processing Challenge, Track 2. The objective of the shared task was to label suicide notes with 15 relevant emotions on the sentence level. Our system uses 15 SVM models (one for each emotion) using the combination of features that was found to perform best on a given emotion. Features included lemmas and trigram bag of words, and information from semantic resources such as WordNet, SentiWordNet and subjectivity clues. The best-performing system labeled 7 of the 15 emotions and achieved an F-score of 53.31% on the test data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信