Dirk Maier, Lukas Kamer, Hansrudi Noser, Zoran Stankovic, Andreas Guth, Peter Bäurle, Norbert P Südkamp, Wolfgang Köstler
{"title":"微创髋臼骨折植骨术解剖植入物形态计量学分析。","authors":"Dirk Maier, Lukas Kamer, Hansrudi Noser, Zoran Stankovic, Andreas Guth, Peter Bäurle, Norbert P Südkamp, Wolfgang Köstler","doi":"10.3109/10929088.2012.709278","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Anatomical implants enable minimally invasive osteosynthesis (MIO) and represent ideal complements of computer-assisted surgical workflows. This 3D morphometric study analyzes anatomical implant forms (AIF) for acetabular fracture osteosynthesis (AFO).</p><p><strong>Materials and methods: </strong>Three-dimensional pelvis models were created from clinical CT data of 99 European-Caucasian patients (50 females, 49 males). The mean age of the patients was 60.1 years (range: 20-89; SD 10.8). Definition of a referential region of interest (ROI) corresponding to an AIF for AFO was followed by automated ROI computation for each of the 198 hemipelvises. Three-dimensional statistical modeling and analysis of the resulting 198 homologous ROIs consisted of thin-plate spline transformation, generalized Procrustes fit, and principal component analysis.</p><p><strong>Results: </strong>The mean ROI length was 18.2 cm (range: 16.1-20.1 cm; SD 0.76). The first principal component (PC1) mainly modeled the ROI length, which correlated well with body height (r = 0.325; p < 0.001). PC1 comprised 47.4% of the overall ROI form variation. PC2 primarily influenced the ROI curvature in the anterior-posterior (inlet) view. Curvatures were more pronounced in female patients compared to males (p < 0.001). There was no gender-specific ROI size variation. PC1-4 contained 80.2% of the total ROI form variation. Left and right ROI forms displayed symmetry.</p><p><strong>Conclusion: </strong>This 3D morphometric study demonstrates the feasibility of anatomical implants for minimally invasive acetabular fracture osteosynthesis. Implant size/length is by far the most important variable of form variation. The necessity of gender-specific implant forms requires further investigation. The non-fractured, contralateral hemipelvis can be used for preoperative surgical planning. Ultimately, the plate design will depend on prospective implant fit tests based on the required fit as defined by the clinician.</p>","PeriodicalId":50644,"journal":{"name":"Computer Aided Surgery","volume":"17 5","pages":"240-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10929088.2012.709278","citationCount":"5","resultStr":"{\"title\":\"Morphometric analysis of anatomical implant forms for minimally invasive acetabular fracture osteosynthesis.\",\"authors\":\"Dirk Maier, Lukas Kamer, Hansrudi Noser, Zoran Stankovic, Andreas Guth, Peter Bäurle, Norbert P Südkamp, Wolfgang Köstler\",\"doi\":\"10.3109/10929088.2012.709278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Anatomical implants enable minimally invasive osteosynthesis (MIO) and represent ideal complements of computer-assisted surgical workflows. This 3D morphometric study analyzes anatomical implant forms (AIF) for acetabular fracture osteosynthesis (AFO).</p><p><strong>Materials and methods: </strong>Three-dimensional pelvis models were created from clinical CT data of 99 European-Caucasian patients (50 females, 49 males). The mean age of the patients was 60.1 years (range: 20-89; SD 10.8). Definition of a referential region of interest (ROI) corresponding to an AIF for AFO was followed by automated ROI computation for each of the 198 hemipelvises. Three-dimensional statistical modeling and analysis of the resulting 198 homologous ROIs consisted of thin-plate spline transformation, generalized Procrustes fit, and principal component analysis.</p><p><strong>Results: </strong>The mean ROI length was 18.2 cm (range: 16.1-20.1 cm; SD 0.76). The first principal component (PC1) mainly modeled the ROI length, which correlated well with body height (r = 0.325; p < 0.001). PC1 comprised 47.4% of the overall ROI form variation. PC2 primarily influenced the ROI curvature in the anterior-posterior (inlet) view. Curvatures were more pronounced in female patients compared to males (p < 0.001). There was no gender-specific ROI size variation. PC1-4 contained 80.2% of the total ROI form variation. Left and right ROI forms displayed symmetry.</p><p><strong>Conclusion: </strong>This 3D morphometric study demonstrates the feasibility of anatomical implants for minimally invasive acetabular fracture osteosynthesis. Implant size/length is by far the most important variable of form variation. The necessity of gender-specific implant forms requires further investigation. The non-fractured, contralateral hemipelvis can be used for preoperative surgical planning. Ultimately, the plate design will depend on prospective implant fit tests based on the required fit as defined by the clinician.</p>\",\"PeriodicalId\":50644,\"journal\":{\"name\":\"Computer Aided Surgery\",\"volume\":\"17 5\",\"pages\":\"240-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10929088.2012.709278\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10929088.2012.709278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10929088.2012.709278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/26 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Morphometric analysis of anatomical implant forms for minimally invasive acetabular fracture osteosynthesis.
Introduction: Anatomical implants enable minimally invasive osteosynthesis (MIO) and represent ideal complements of computer-assisted surgical workflows. This 3D morphometric study analyzes anatomical implant forms (AIF) for acetabular fracture osteosynthesis (AFO).
Materials and methods: Three-dimensional pelvis models were created from clinical CT data of 99 European-Caucasian patients (50 females, 49 males). The mean age of the patients was 60.1 years (range: 20-89; SD 10.8). Definition of a referential region of interest (ROI) corresponding to an AIF for AFO was followed by automated ROI computation for each of the 198 hemipelvises. Three-dimensional statistical modeling and analysis of the resulting 198 homologous ROIs consisted of thin-plate spline transformation, generalized Procrustes fit, and principal component analysis.
Results: The mean ROI length was 18.2 cm (range: 16.1-20.1 cm; SD 0.76). The first principal component (PC1) mainly modeled the ROI length, which correlated well with body height (r = 0.325; p < 0.001). PC1 comprised 47.4% of the overall ROI form variation. PC2 primarily influenced the ROI curvature in the anterior-posterior (inlet) view. Curvatures were more pronounced in female patients compared to males (p < 0.001). There was no gender-specific ROI size variation. PC1-4 contained 80.2% of the total ROI form variation. Left and right ROI forms displayed symmetry.
Conclusion: This 3D morphometric study demonstrates the feasibility of anatomical implants for minimally invasive acetabular fracture osteosynthesis. Implant size/length is by far the most important variable of form variation. The necessity of gender-specific implant forms requires further investigation. The non-fractured, contralateral hemipelvis can be used for preoperative surgical planning. Ultimately, the plate design will depend on prospective implant fit tests based on the required fit as defined by the clinician.
期刊介绍:
The scope of Computer Aided Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotaxic procedures, surgery guided by ultrasound, image guided focal irradiation, robotic surgery, and other therapeutic interventions that are performed with the use of digital imaging technology.