各要素的有效功函数

IF 8.7 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Hiroyuki Kawano
{"title":"各要素的有效功函数","authors":"Hiroyuki Kawano","doi":"10.1016/j.progsurf.2020.100583","DOIUrl":null,"url":null,"abstract":"<div><p>As a much-enriched supplement to the previous review paper entitled the “Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces” [Prog. Surf. Sci. 83 (2008) 1–165], the present monograph summarizes a comprehensive and up-to-date database in Table 1, which includes more than ten thousands of experimental and theoretical data accumulated mainly during the last half century on the work functions (<span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>) effective for positive-ionic, electronic and negative-ionic emissions from mono- and polycrystalline surfaces of 88 kinds of chemical elements (<sub>1</sub>H–<sub>99</sub>Es), and also which includes the main experimental condition and method employed for each sample specimen (bulk or film) together with 490 footnotes. From the above database originating from 4461 references published to date in the fields of both physics and chemistry, the most probable values of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> for substantially clean surfaces are statistically estimated for about 600 surface species of mono- and polycrystals. The values recommended for <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> together with <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> in Table 2 are much more abundant in both surface species and data amount, and also they may be more reliable and convenient than those in popular handbooks and reviews consulted widely still today by great many workers, because the latter is based on less-plentiful data on <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> published generally before <span><math><mo>∼</mo></math></span>1980 and also because it covers no value recommended for <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>. Consequently, Table 1 may be more advantageous as the latest and most abundant database on work functions (especially <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>) for quickly referring to a variety of data obtained under specified conditions. Comparison of the most probable values of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> recommended for each surface species between this article and other literatures listed in Tables 2 and 3 indicates that consideration of the recent work function data accumulated particularly during the last <span><math><mo>∼</mo></math></span>40 years is very important for correct analysis of these surface phenomena or processes concerned with either work function or its changes. On the basis of our simple model about the work function of polycrystal consisting of a number of patchy faces (1–i) having each a fractional area (<em>F</em><span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>) and a local work function (<span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>), its values of both <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> are theoretically calculated and also critically compared with a plenty of experimental data. In addition, the “polycrystalline thermionic work function contrast” (<span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup><mo>≡</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span>) well-known as the thermionic peculiarity inherent in every polycrystal is carefully analyzed as a function of the degree of monocrystallization (<span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>) corresponding to the largest (<em>F</em><span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span>) among <em>F</em><span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s (Tables 4–6 and Fig. 1), thereby yielding the conclusions as follows: (1) <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup></mrow></math></span> <span><math><mo>≃</mo></math></span> const (&gt;0) holds for the generally called “polycrystalline” surfaces (usually <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50%), (2) <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup></mrow></math></span> ranges from <span><math><mo>∼</mo></math></span>0.3 eV (Pt) to 0.7 eV (Nb) depending upon the polycrystalline surface species, (3) in the case of the “submonocrystal” (50 &lt; <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 100%) tentatively named here, <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup></mrow></math></span> decreases parabolically down to zero as <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> increases from <span><math><mo>∼</mo></math></span>50% up to 100% (monocrystal), (4) <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mspace></mspace><mi>eV</mi></mrow></math></span> applies to a clean and smooth monocrystalline surface (<span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>≈</mo></math></span> 100%) alone, (5) regarding negative ion emission, on the other hand, our theoretical prediction of <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗∗</mi></mrow></msup><mo>≡</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>−</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mspace></mspace><mi>eV</mi></mrow></math></span> is experimentally verified to hold for any surface species under any surface conditions (Table 7), (6) every polycrystal (usually, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50%) may be concluded in general to have a unique value of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> characteristic of its species with little dependence upon <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, (7) this conclusion affords us first a sound basis for supporting theoretically the experimental fact (Table 2) that every species of polycrystal has a nearly constant value of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> as well as <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> (usually within the uncertainty of <span><math><mo>±</mo></math></span>0.1 eV) depending little upon the difference in the surface components (<em>F</em><span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>) among specimens so long as <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50%, (8) on the contrary to polycrystal (<span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50%), any submonocrystal (50 &lt; <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 100%) has such an anomaly that it does not possess the unique value of work function characteristic of the surface species itself, because its <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> as well as <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> changes considerably depending upon <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, (9) consequently, submonocrystal must be taken as another type (category) different from both poly- and monocrystals, (10) in this way, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> acts as the <em>key</em> factor mainly governing the work functions in the different mode between poly- and submonocrystals with <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> lower and higher than the “critical point” of 50%, respectively, (11) on the contrary to <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> belonging to <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> has a differential effect on both <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>, but their values remain nearly constant so long as <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50% and, thus interestingly, (12) the complicate governance of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> by both <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> and also the anomaly of submonocrystal (cf. (8) above) observed first by our theoretical analysis may be considered as a new contribution to the work function studies developed to date. Together with brief comments and experimental conditions, typical data on <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> and/or <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> are summarized from the various aspects of (1) examination of the work function dependence upon the surface atom density of low-Miller-index monocrystals of typical metals such as Al, Ni, W and Re (Table 8), (2) demonstration of the above dependence usually called the “anisotropic work function dependence sequences” of both <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(110) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(100) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(111) and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(110) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(100) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(111) for various bcc-metals (e.g., Nb, Mo, Ta and W) exactly obeying the Smoluchowski rule (Table 9), (3) substantiation of both <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(111) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(100) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(110) for a variety of fcc-metals (except Al and Pb) and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(111) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(100) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(110) for Ni strictly following the above rule (Table 10), (4) verification of the quantitative relations between work function and surface energy and also melting point of the three low index planes of several metals (typically, Ni), (5) examination of the work function change (<span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span>) due to allotropic transformation from <span><math><mi>α</mi></math></span> to <span><math><mi>β</mi></math></span> or <span><math><mi>β</mi></math></span> to <span><math><mi>γ</mi></math></span> phase (Table 11) together with a concise outline of the Burgers orientation relationship, (6) evaluation of <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> due to liquefying (Table 12), (7) estimation of <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> due to transformation from ferro- to paramagnetic state (Table 13) in addition to a brief description of the Curie point dependence upon metastable metal film thickness above one monolayer, (8) estimation of <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> due to transition from normal to superconducting state (Table 14), (9) study of the work function dependence on the Wigner–Seitz radius and also comparison between its theoretical values (by Kohn) and experimental data (Fig. 2), (10) inspection of the annealing effect on work function for layers or films, (11) verification of the coincidence of work function values among different experimental methods, and (12) inquisition of the work function dependence upon the size of fine particles (<span><math><mo>∼</mo></math></span>20–100 Å in radius) studied by theory and experiment.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"97 1","pages":"Article 100583"},"PeriodicalIF":8.7000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Effective Work Functions of the Elements\",\"authors\":\"Hiroyuki Kawano\",\"doi\":\"10.1016/j.progsurf.2020.100583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a much-enriched supplement to the previous review paper entitled the “Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces” [Prog. Surf. Sci. 83 (2008) 1–165], the present monograph summarizes a comprehensive and up-to-date database in Table 1, which includes more than ten thousands of experimental and theoretical data accumulated mainly during the last half century on the work functions (<span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>) effective for positive-ionic, electronic and negative-ionic emissions from mono- and polycrystalline surfaces of 88 kinds of chemical elements (<sub>1</sub>H–<sub>99</sub>Es), and also which includes the main experimental condition and method employed for each sample specimen (bulk or film) together with 490 footnotes. From the above database originating from 4461 references published to date in the fields of both physics and chemistry, the most probable values of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> for substantially clean surfaces are statistically estimated for about 600 surface species of mono- and polycrystals. The values recommended for <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> together with <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> in Table 2 are much more abundant in both surface species and data amount, and also they may be more reliable and convenient than those in popular handbooks and reviews consulted widely still today by great many workers, because the latter is based on less-plentiful data on <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> published generally before <span><math><mo>∼</mo></math></span>1980 and also because it covers no value recommended for <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>. Consequently, Table 1 may be more advantageous as the latest and most abundant database on work functions (especially <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>) for quickly referring to a variety of data obtained under specified conditions. Comparison of the most probable values of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> recommended for each surface species between this article and other literatures listed in Tables 2 and 3 indicates that consideration of the recent work function data accumulated particularly during the last <span><math><mo>∼</mo></math></span>40 years is very important for correct analysis of these surface phenomena or processes concerned with either work function or its changes. On the basis of our simple model about the work function of polycrystal consisting of a number of patchy faces (1–i) having each a fractional area (<em>F</em><span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>) and a local work function (<span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>), its values of both <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> are theoretically calculated and also critically compared with a plenty of experimental data. In addition, the “polycrystalline thermionic work function contrast” (<span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup><mo>≡</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span>) well-known as the thermionic peculiarity inherent in every polycrystal is carefully analyzed as a function of the degree of monocrystallization (<span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>) corresponding to the largest (<em>F</em><span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span>) among <em>F</em><span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s (Tables 4–6 and Fig. 1), thereby yielding the conclusions as follows: (1) <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup></mrow></math></span> <span><math><mo>≃</mo></math></span> const (&gt;0) holds for the generally called “polycrystalline” surfaces (usually <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50%), (2) <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup></mrow></math></span> ranges from <span><math><mo>∼</mo></math></span>0.3 eV (Pt) to 0.7 eV (Nb) depending upon the polycrystalline surface species, (3) in the case of the “submonocrystal” (50 &lt; <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 100%) tentatively named here, <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup></mrow></math></span> decreases parabolically down to zero as <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> increases from <span><math><mo>∼</mo></math></span>50% up to 100% (monocrystal), (4) <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗</mi></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mspace></mspace><mi>eV</mi></mrow></math></span> applies to a clean and smooth monocrystalline surface (<span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>≈</mo></math></span> 100%) alone, (5) regarding negative ion emission, on the other hand, our theoretical prediction of <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>∗∗</mi></mrow></msup><mo>≡</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>−</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mspace></mspace><mi>eV</mi></mrow></math></span> is experimentally verified to hold for any surface species under any surface conditions (Table 7), (6) every polycrystal (usually, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50%) may be concluded in general to have a unique value of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> characteristic of its species with little dependence upon <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, (7) this conclusion affords us first a sound basis for supporting theoretically the experimental fact (Table 2) that every species of polycrystal has a nearly constant value of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> as well as <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> (usually within the uncertainty of <span><math><mo>±</mo></math></span>0.1 eV) depending little upon the difference in the surface components (<em>F</em><span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>) among specimens so long as <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50%, (8) on the contrary to polycrystal (<span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50%), any submonocrystal (50 &lt; <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 100%) has such an anomaly that it does not possess the unique value of work function characteristic of the surface species itself, because its <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> as well as <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> changes considerably depending upon <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, (9) consequently, submonocrystal must be taken as another type (category) different from both poly- and monocrystals, (10) in this way, <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> acts as the <em>key</em> factor mainly governing the work functions in the different mode between poly- and submonocrystals with <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> lower and higher than the “critical point” of 50%, respectively, (11) on the contrary to <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> belonging to <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> has a differential effect on both <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>, but their values remain nearly constant so long as <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> &lt; 50% and, thus interestingly, (12) the complicate governance of <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> by both <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> and also the anomaly of submonocrystal (cf. (8) above) observed first by our theoretical analysis may be considered as a new contribution to the work function studies developed to date. Together with brief comments and experimental conditions, typical data on <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span> and/or <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> are summarized from the various aspects of (1) examination of the work function dependence upon the surface atom density of low-Miller-index monocrystals of typical metals such as Al, Ni, W and Re (Table 8), (2) demonstration of the above dependence usually called the “anisotropic work function dependence sequences” of both <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(110) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(100) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(111) and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(110) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(100) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(111) for various bcc-metals (e.g., Nb, Mo, Ta and W) exactly obeying the Smoluchowski rule (Table 9), (3) substantiation of both <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(111) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(100) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></math></span>(110) for a variety of fcc-metals (except Al and Pb) and <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(111) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(100) &gt; <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>(110) for Ni strictly following the above rule (Table 10), (4) verification of the quantitative relations between work function and surface energy and also melting point of the three low index planes of several metals (typically, Ni), (5) examination of the work function change (<span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span>) due to allotropic transformation from <span><math><mi>α</mi></math></span> to <span><math><mi>β</mi></math></span> or <span><math><mi>β</mi></math></span> to <span><math><mi>γ</mi></math></span> phase (Table 11) together with a concise outline of the Burgers orientation relationship, (6) evaluation of <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> due to liquefying (Table 12), (7) estimation of <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> due to transformation from ferro- to paramagnetic state (Table 13) in addition to a brief description of the Curie point dependence upon metastable metal film thickness above one monolayer, (8) estimation of <span><math><mrow><mi>Δ</mi><msup><mrow><mi>ϕ</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> due to transition from normal to superconducting state (Table 14), (9) study of the work function dependence on the Wigner–Seitz radius and also comparison between its theoretical values (by Kohn) and experimental data (Fig. 2), (10) inspection of the annealing effect on work function for layers or films, (11) verification of the coincidence of work function values among different experimental methods, and (12) inquisition of the work function dependence upon the size of fine particles (<span><math><mo>∼</mo></math></span>20–100 Å in radius) studied by theory and experiment.</p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"97 1\",\"pages\":\"Article 100583\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681620300125\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681620300125","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 24

摘要

作为先前题为“单晶和多晶表面离子和电子发射的有效功函数”的综述论文的丰富补充[Prog。冲浪。Sci. 83(2008) 1 - 165],本专著总结了表1中全面且最新的数据库,其中包括主要在过去半个世纪中积累的关于88种化学元素(h - 99es)单晶和多晶表面正离子,电子和负离子发射有效的功函数(ϕ+, ϕe和ϕ -)的数万个实验和理论数据。还包括每个样品(散装或薄膜)的主要实验条件和方法以及490个脚注。根据迄今为止在物理和化学领域发表的4461篇参考文献的上述数据库,对大约600种单晶和多晶的表面进行了统计估计,大致清洁表面的φ +, ϕe和φ -的最可能值。表2中推荐的ϕ - e以及φ +和φ -的值在表面种类和数据量上都要丰富得多,而且它们可能比今天仍被许多工作者广泛参考的流行手册和评论中的值更可靠和方便,因为后者是基于通常在~ 1980年之前发布的较少的ϕ - e数据,也因为它没有涵盖推荐的φ +和φ -的值。因此,表1作为最新和最丰富的功函数数据库(特别是ϕe)可能更有优势,可以快速引用在特定条件下获得的各种数据。将本文与表2和表3中列出的其他文献之间推荐的每种表面种的最可能的ϕe值进行比较,表明考虑最近积累的功函数数据,特别是在过去~ 40年中积累的功函数数据,对于正确分析与功函数或其变化有关的这些表面现象或过程非常重要。在我们关于由许多斑块面(1-i)组成的多晶的功函数的简单模型的基础上,每个面都有一个分数面积(Fi)和一个局部功函数(ϕi),其φ +和ϕe的值都是理论上计算的,并且还与大量实验数据进行了严格的比较。此外,作为每个多晶中固有的热离子特性的“多晶热离子功函数对比”(Δϕ∗≡ϕ+−ϕe)被仔细分析为单晶程度(δm)的函数,对应于Fi中最大的(Fm)(表4-6和图1),从而得出以下结论:(1)Δϕ∗const (&gt;0)适用于通常被称为“多晶”表面(通常δm &lt;(2) Δϕ∗的范围从~ 0.3 eV (Pt)到0.7 eV (Nb),取决于多晶表面的种类,(3)在“亚单晶”的情况下(50 &lt;δm & lt;100%)这里暂定,Δϕ∗随着δm从~ 50%增加到100%(单晶)而抛物线下降到零,(4)Δϕ∗=0.0eV仅适用于干净和光滑的单晶表面(δm≈100%),(5)关于负离子发射,另一方面,我们的理论预测Δϕ∗≡φ−−ϕe=0.0eV被实验验证适用于任何表面条件下的任何表面物质(表7),(6)每个多晶(通常,δm &lt;50%)可以得出一般有独特价值的ϕe的特点与小的物种依赖δm,(7)这一结论提供给我们一个良好的基础理论上支持实验的事实(表2),每一种多晶体的ϕ几乎恒定值e以及ϕ+(通常在±0.1 eV)的不确定性这小取决于表面的不同组件(Fi和ϕ我)标本中只要δm & lt;50%,(8)与多晶相反(δm &lt;50%),任何亚单晶(50 &lt;δm & lt;100%)具有这样的异常,它不具有表面物种本身的功函数特征的独特值,因为它的ϕ和ϕ+随着δm的变化而发生很大变化,(9)因此,亚单晶必须被视为与多晶晶和单晶不同的另一种类型(类别),(10)以这种方式,δm是主要控制多晶晶和亚单晶在不同模式下功函数的关键因素,δm分别低于和高于50%的“临界点”。(11)与δm相反,属于δm的ϕ+和ϕe对两者都有不同的影响,但只要δm &lt;50%,因此有趣的是,(12)δm和m对φ +和e的复杂治理,以及我们的理论分析首先观察到的亚单晶异常(参见上文(8)),可以被认为是对迄今为止开发的功函数研究的新贡献。 与简要的评论和实验条件一起,从各个方面总结了关于ϕ+和/或ϕ+的典型数据:(1)检查功函数依赖于典型金属(如Al, Ni, W和Re)的低miller指数单晶的表面原子密度(表8);(2)证明上述依赖关系通常称为“各向异性功函数依赖序列”;ϕe(100)在ϕ+(110) &gt;ϕ+(100)在φ +(111)的各种bcc金属(例如,Nb, Mo, Ta和W)完全服从斯摩鲁霍夫斯基规则(表9),(3)证实了两者的e(111) &gt;ϕe(100)在适用于各种fcc金属(Al和Pb除外)和φ +(111) &gt;ϕ+(100)在Ni的φ +(110)严格遵循上述规则(表10),(4)验证功函数与表面能之间的定量关系以及几种金属(通常是Ni)的三个低指数平面的熔点,(5)检查功函数变化(Δϕe)由于从α到β或β到γ相的同素异构转变(表11)以及汉堡取向关系的简要概述,(6)评估Δϕe由于液化(表12),(7)铁态向顺磁态转变Δϕe的估计(表13),并简要描述了居里点对单层以上亚稳金属膜厚度的依赖关系;(8)正常态向超导态转变Δϕe的估计(表14);(9)功函数对Wigner-Seitz半径的依赖关系的研究及其理论值(Kohn)与实验数据的比较(图2);(10)检查退火对层或膜的功函数的影响,(11)验证不同实验方法之间功函数值的一致性,以及(12)通过理论和实验研究的细颗粒(半径为~ 20-100 Å)大小对功函数的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Work Functions of the Elements

As a much-enriched supplement to the previous review paper entitled the “Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces” [Prog. Surf. Sci. 83 (2008) 1–165], the present monograph summarizes a comprehensive and up-to-date database in Table 1, which includes more than ten thousands of experimental and theoretical data accumulated mainly during the last half century on the work functions (ϕ+, ϕe and ϕ) effective for positive-ionic, electronic and negative-ionic emissions from mono- and polycrystalline surfaces of 88 kinds of chemical elements (1H–99Es), and also which includes the main experimental condition and method employed for each sample specimen (bulk or film) together with 490 footnotes. From the above database originating from 4461 references published to date in the fields of both physics and chemistry, the most probable values of ϕ+, ϕe and ϕ for substantially clean surfaces are statistically estimated for about 600 surface species of mono- and polycrystals. The values recommended for ϕe together with ϕ+ and ϕ in Table 2 are much more abundant in both surface species and data amount, and also they may be more reliable and convenient than those in popular handbooks and reviews consulted widely still today by great many workers, because the latter is based on less-plentiful data on ϕe published generally before 1980 and also because it covers no value recommended for ϕ+ and ϕ. Consequently, Table 1 may be more advantageous as the latest and most abundant database on work functions (especially ϕe) for quickly referring to a variety of data obtained under specified conditions. Comparison of the most probable values of ϕe recommended for each surface species between this article and other literatures listed in Tables 2 and 3 indicates that consideration of the recent work function data accumulated particularly during the last 40 years is very important for correct analysis of these surface phenomena or processes concerned with either work function or its changes. On the basis of our simple model about the work function of polycrystal consisting of a number of patchy faces (1–i) having each a fractional area (Fi) and a local work function (ϕi), its values of both ϕ+ and ϕe are theoretically calculated and also critically compared with a plenty of experimental data. In addition, the “polycrystalline thermionic work function contrast” (Δϕϕ+ϕe) well-known as the thermionic peculiarity inherent in every polycrystal is carefully analyzed as a function of the degree of monocrystallization (δm) corresponding to the largest (Fm) among Fi’s (Tables 4–6 and Fig. 1), thereby yielding the conclusions as follows: (1) Δϕ const (>0) holds for the generally called “polycrystalline” surfaces (usually δm < 50%), (2) Δϕ ranges from 0.3 eV (Pt) to 0.7 eV (Nb) depending upon the polycrystalline surface species, (3) in the case of the “submonocrystal” (50 < δm < 100%) tentatively named here, Δϕ decreases parabolically down to zero as δm increases from 50% up to 100% (monocrystal), (4) Δϕ=0.0eV applies to a clean and smooth monocrystalline surface (δm 100%) alone, (5) regarding negative ion emission, on the other hand, our theoretical prediction of Δϕ∗∗ϕϕe=0.0eV is experimentally verified to hold for any surface species under any surface conditions (Table 7), (6) every polycrystal (usually, δm < 50%) may be concluded in general to have a unique value of ϕe characteristic of its species with little dependence upon δm, (7) this conclusion affords us first a sound basis for supporting theoretically the experimental fact (Table 2) that every species of polycrystal has a nearly constant value of ϕe as well as ϕ+ (usually within the uncertainty of ±0.1 eV) depending little upon the difference in the surface components (Fi and ϕi) among specimens so long as δm < 50%, (8) on the contrary to polycrystal (δm < 50%), any submonocrystal (50 < δm < 100%) has such an anomaly that it does not possess the unique value of work function characteristic of the surface species itself, because its ϕe as well as ϕ+ changes considerably depending upon δm, (9) consequently, submonocrystal must be taken as another type (category) different from both poly- and monocrystals, (10) in this way, δm acts as the key factor mainly governing the work functions in the different mode between poly- and submonocrystals with δm lower and higher than the “critical point” of 50%, respectively, (11) on the contrary to δm, ϕm belonging to δm has a differential effect on both ϕ+ and ϕe, but their values remain nearly constant so long as δm < 50% and, thus interestingly, (12) the complicate governance of ϕ+ and ϕe by both δm and ϕm and also the anomaly of submonocrystal (cf. (8) above) observed first by our theoretical analysis may be considered as a new contribution to the work function studies developed to date. Together with brief comments and experimental conditions, typical data on ϕe and/or ϕ+ are summarized from the various aspects of (1) examination of the work function dependence upon the surface atom density of low-Miller-index monocrystals of typical metals such as Al, Ni, W and Re (Table 8), (2) demonstration of the above dependence usually called the “anisotropic work function dependence sequences” of both ϕe(110) > ϕe(100) > ϕe(111) and ϕ+(110) > ϕ+(100) > ϕ+(111) for various bcc-metals (e.g., Nb, Mo, Ta and W) exactly obeying the Smoluchowski rule (Table 9), (3) substantiation of both ϕe(111) > ϕe(100) > ϕe(110) for a variety of fcc-metals (except Al and Pb) and ϕ+(111) > ϕ+(100) > ϕ+(110) for Ni strictly following the above rule (Table 10), (4) verification of the quantitative relations between work function and surface energy and also melting point of the three low index planes of several metals (typically, Ni), (5) examination of the work function change (Δϕe) due to allotropic transformation from α to β or β to γ phase (Table 11) together with a concise outline of the Burgers orientation relationship, (6) evaluation of Δϕe due to liquefying (Table 12), (7) estimation of Δϕe due to transformation from ferro- to paramagnetic state (Table 13) in addition to a brief description of the Curie point dependence upon metastable metal film thickness above one monolayer, (8) estimation of Δϕe due to transition from normal to superconducting state (Table 14), (9) study of the work function dependence on the Wigner–Seitz radius and also comparison between its theoretical values (by Kohn) and experimental data (Fig. 2), (10) inspection of the annealing effect on work function for layers or films, (11) verification of the coincidence of work function values among different experimental methods, and (12) inquisition of the work function dependence upon the size of fine particles (20–100 Å in radius) studied by theory and experiment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Surface Science
Progress in Surface Science 工程技术-物理:凝聚态物理
CiteScore
11.30
自引率
0.00%
发文量
10
审稿时长
3 months
期刊介绍: Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信