{"title":"含有 5-azidomethyluracil 的 PNA:固相和溶相改性的新方法。","authors":"Alex Manicardi, Alessandro Accetta, Tullia Tedeschi, Stefano Sforza, Rosangela Marchelli, Roberto Corradini","doi":"10.4161/adna.20158","DOIUrl":null,"url":null,"abstract":"<p><p>Fmoc- and Boc-protected modified monomers bearing 5-azidomethyluracil nucleobase were synthesized. Four different solid-phase synthetic strategies were tested in order to evaluate the application of this series of monomers for the solid-phase synthesis of modified PNA. The azide was used as masked amine for the introduction of amide-linked functional groups, allowing the production of a library of compounds starting from a single modified monomer. The azide function was also exploited as reactive group for the modification of PNA in solution via azide-alkyne click cycloaddition.</p>","PeriodicalId":8444,"journal":{"name":"Artificial DNA: PNA & XNA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/80/91/adna-3-53.PMC3429531.pdf","citationCount":"0","resultStr":"{\"title\":\"PNA bearing 5-azidomethyluracil: a novel approach for solid and solution phase modification.\",\"authors\":\"Alex Manicardi, Alessandro Accetta, Tullia Tedeschi, Stefano Sforza, Rosangela Marchelli, Roberto Corradini\",\"doi\":\"10.4161/adna.20158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fmoc- and Boc-protected modified monomers bearing 5-azidomethyluracil nucleobase were synthesized. Four different solid-phase synthetic strategies were tested in order to evaluate the application of this series of monomers for the solid-phase synthesis of modified PNA. The azide was used as masked amine for the introduction of amide-linked functional groups, allowing the production of a library of compounds starting from a single modified monomer. The azide function was also exploited as reactive group for the modification of PNA in solution via azide-alkyne click cycloaddition.</p>\",\"PeriodicalId\":8444,\"journal\":{\"name\":\"Artificial DNA: PNA & XNA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/80/91/adna-3-53.PMC3429531.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial DNA: PNA & XNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/adna.20158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial DNA: PNA & XNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/adna.20158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PNA bearing 5-azidomethyluracil: a novel approach for solid and solution phase modification.
Fmoc- and Boc-protected modified monomers bearing 5-azidomethyluracil nucleobase were synthesized. Four different solid-phase synthetic strategies were tested in order to evaluate the application of this series of monomers for the solid-phase synthesis of modified PNA. The azide was used as masked amine for the introduction of amide-linked functional groups, allowing the production of a library of compounds starting from a single modified monomer. The azide function was also exploited as reactive group for the modification of PNA in solution via azide-alkyne click cycloaddition.