{"title":"TLR5-鞭毛蛋白复合物的结构:病原体检测的新模式,保守的受体二聚化信号传导。","authors":"Jinghua Lu, Peter D Sun","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge about how Toll-like receptors (TLRs) recognize pathogenic ligands is critical to understanding how these receptors are activated and to designing therapeutic compounds that target this family of receptors for inflammatory diseases. The crystal structure of TLR5 in complex with its bacterial ligand flagellin revealed that the ligand-binding mode for TLR5 is distinct from that of previously characterized TLRs. Nevertheless, like other TLRs, TLR5 forms a dimer in response to ligand binding. This work contributes to our current knowledge of TLR function and further demonstrates the ability of TLRs to couple versatile ligand recognition to a conserved receptor signaling mechanism.</p>","PeriodicalId":49560,"journal":{"name":"Science Signaling","volume":"5 223","pages":"pe11"},"PeriodicalIF":7.3000,"publicationDate":"2012-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3727914/pdf/nihms-492373.pdf","citationCount":"0","resultStr":"{\"title\":\"The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling.\",\"authors\":\"Jinghua Lu, Peter D Sun\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knowledge about how Toll-like receptors (TLRs) recognize pathogenic ligands is critical to understanding how these receptors are activated and to designing therapeutic compounds that target this family of receptors for inflammatory diseases. The crystal structure of TLR5 in complex with its bacterial ligand flagellin revealed that the ligand-binding mode for TLR5 is distinct from that of previously characterized TLRs. Nevertheless, like other TLRs, TLR5 forms a dimer in response to ligand binding. This work contributes to our current knowledge of TLR function and further demonstrates the ability of TLRs to couple versatile ligand recognition to a conserved receptor signaling mechanism.</p>\",\"PeriodicalId\":49560,\"journal\":{\"name\":\"Science Signaling\",\"volume\":\"5 223\",\"pages\":\"pe11\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2012-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3727914/pdf/nihms-492373.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling.
Knowledge about how Toll-like receptors (TLRs) recognize pathogenic ligands is critical to understanding how these receptors are activated and to designing therapeutic compounds that target this family of receptors for inflammatory diseases. The crystal structure of TLR5 in complex with its bacterial ligand flagellin revealed that the ligand-binding mode for TLR5 is distinct from that of previously characterized TLRs. Nevertheless, like other TLRs, TLR5 forms a dimer in response to ligand binding. This work contributes to our current knowledge of TLR function and further demonstrates the ability of TLRs to couple versatile ligand recognition to a conserved receptor signaling mechanism.
Science SignalingBiochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
148
期刊介绍:
Science Signaling is a weekly, online multidisciplinary journal dedicated to the life sciences. Our editorial team's mission is to publish studies that elucidate the fundamental mechanisms underlying biological processes across various organisms. We prioritize research that offers novel insights into physiology, elucidates aberrant mechanisms leading to disease, identifies potential therapeutic targets and strategies, and characterizes the effects of drugs both in vitro and in vivo.