{"title":"一种新的自适应快速元胞自动机邻域检测与规则识别算法。","authors":"Y Zhao, H L Wei, S A Billings","doi":"10.1109/TSMCB.2012.2185790","DOIUrl":null,"url":null,"abstract":"<p><p>An important step in the identification of cellular automata (CA) is to detect the correct neighborhood before parameter estimation. Many authors have suggested procedures based on the removal of redundant neighbors from a very large initial neighborhood one by one to find the real model, but this often induces ill conditioning and overfitting. This is true particularly for a large initial neighborhood where there are few significant terms, and this will be demonstrated by an example in this paper. By introducing a new criteria and three new techniques, this paper proposes a new adaptive fast CA orthogonal-least-square (Adaptive-FCA-OLS) algorithm, which cannot only adaptively search for the correct neighborhood without any preset tolerance but can also considerably reduce the computational complexity and memory usage. Several numerical examples demonstrate that the Adaptive-FCA-OLS algorithm has better robustness to noise and to the size of the initial neighborhood than other recently developed neighborhood detection methods in the identification of binary CA. </p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1283-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2185790","citationCount":"16","resultStr":"{\"title\":\"A New Adaptive Fast Cellular Automaton Neighborhood Detection and Rule Identification Algorithm.\",\"authors\":\"Y Zhao, H L Wei, S A Billings\",\"doi\":\"10.1109/TSMCB.2012.2185790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An important step in the identification of cellular automata (CA) is to detect the correct neighborhood before parameter estimation. Many authors have suggested procedures based on the removal of redundant neighbors from a very large initial neighborhood one by one to find the real model, but this often induces ill conditioning and overfitting. This is true particularly for a large initial neighborhood where there are few significant terms, and this will be demonstrated by an example in this paper. By introducing a new criteria and three new techniques, this paper proposes a new adaptive fast CA orthogonal-least-square (Adaptive-FCA-OLS) algorithm, which cannot only adaptively search for the correct neighborhood without any preset tolerance but can also considerably reduce the computational complexity and memory usage. Several numerical examples demonstrate that the Adaptive-FCA-OLS algorithm has better robustness to noise and to the size of the initial neighborhood than other recently developed neighborhood detection methods in the identification of binary CA. </p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\" \",\"pages\":\"1283-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2185790\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2012.2185790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2012.2185790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/6/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A New Adaptive Fast Cellular Automaton Neighborhood Detection and Rule Identification Algorithm.
An important step in the identification of cellular automata (CA) is to detect the correct neighborhood before parameter estimation. Many authors have suggested procedures based on the removal of redundant neighbors from a very large initial neighborhood one by one to find the real model, but this often induces ill conditioning and overfitting. This is true particularly for a large initial neighborhood where there are few significant terms, and this will be demonstrated by an example in this paper. By introducing a new criteria and three new techniques, this paper proposes a new adaptive fast CA orthogonal-least-square (Adaptive-FCA-OLS) algorithm, which cannot only adaptively search for the correct neighborhood without any preset tolerance but can also considerably reduce the computational complexity and memory usage. Several numerical examples demonstrate that the Adaptive-FCA-OLS algorithm has better robustness to noise and to the size of the initial neighborhood than other recently developed neighborhood detection methods in the identification of binary CA.