羟肟酸作为基质金属蛋白酶抑制剂。

Q2 Medicine
Rajeshwar P Verma
{"title":"羟肟酸作为基质金属蛋白酶抑制剂。","authors":"Rajeshwar P Verma","doi":"10.1007/978-3-0348-0364-9_5","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix metalloproteinases (MMPs), an increasing family of zinc- and calcium-dependent endopeptidases, are involved in both the tissue remodeling and the degradation of extracellular matrix (ECM). These enzymes have been a pharmaceutical target for over 25 years in order to develop many families of therapeutically important synthetic matrix metalloproteinase inhibitors (MMPIs) for the treatment of several serious pathologies. Although clinical trials on most of the MMPIs gave disappointing results, at least one MMPI (Periostat) has been approved by the FDA for the treatment of periodontal disease. Current research efforts on the development of selective inhibitors toward certain MMPs gave a vast number of small molecules as potent MMPIs, of which, some of the effective candidates are in their various stages of (pre)clinical trials for the treatment of various diseases such as arthritis and different cancers. The selectivity of MMPIs toward specific MMPs depends mainly on their structural templates or scaffolds and the variations in their substituents. Thus, the combination of traditional, mechanism-based, and structural-based approaches may help for the future development of specific MMPIs. In recent years, research focuses on the design and development of MMPIs possess a hydroxamic acid moiety, a strong Zn(II)-binding group, which leads to their high-affinity binding to the enzymic sites of the MMPs. We herein discuss the hydroxamic acid-based MMPIs with respect to their mechanism of interaction, structure-activity relationship (SAR), quantitative structure-activity relationship (QSAR), recent development, and clinical trials.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"103 ","pages":"137-76"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-0348-0364-9_5","citationCount":"24","resultStr":"{\"title\":\"Hydroxamic acids as matrix metalloproteinase inhibitors.\",\"authors\":\"Rajeshwar P Verma\",\"doi\":\"10.1007/978-3-0348-0364-9_5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Matrix metalloproteinases (MMPs), an increasing family of zinc- and calcium-dependent endopeptidases, are involved in both the tissue remodeling and the degradation of extracellular matrix (ECM). These enzymes have been a pharmaceutical target for over 25 years in order to develop many families of therapeutically important synthetic matrix metalloproteinase inhibitors (MMPIs) for the treatment of several serious pathologies. Although clinical trials on most of the MMPIs gave disappointing results, at least one MMPI (Periostat) has been approved by the FDA for the treatment of periodontal disease. Current research efforts on the development of selective inhibitors toward certain MMPs gave a vast number of small molecules as potent MMPIs, of which, some of the effective candidates are in their various stages of (pre)clinical trials for the treatment of various diseases such as arthritis and different cancers. The selectivity of MMPIs toward specific MMPs depends mainly on their structural templates or scaffolds and the variations in their substituents. Thus, the combination of traditional, mechanism-based, and structural-based approaches may help for the future development of specific MMPIs. In recent years, research focuses on the design and development of MMPIs possess a hydroxamic acid moiety, a strong Zn(II)-binding group, which leads to their high-affinity binding to the enzymic sites of the MMPs. We herein discuss the hydroxamic acid-based MMPIs with respect to their mechanism of interaction, structure-activity relationship (SAR), quantitative structure-activity relationship (QSAR), recent development, and clinical trials.</p>\",\"PeriodicalId\":36906,\"journal\":{\"name\":\"Experientia supplementum (2012)\",\"volume\":\"103 \",\"pages\":\"137-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-0348-0364-9_5\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experientia supplementum (2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-0348-0364-9_5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experientia supplementum (2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-0348-0364-9_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 24

摘要

基质金属蛋白酶(Matrix metalloproteinases, MMPs)是一个越来越多的锌和钙依赖的内肽酶家族,参与组织重塑和细胞外基质(extracellular Matrix, ECM)的降解。这些酶已经成为超过25年的药物靶点,以开发许多具有重要治疗意义的合成基质金属蛋白酶抑制剂(MMPIs)家族,用于治疗几种严重的疾病。尽管大多数MMPI的临床试验结果令人失望,但至少有一种MMPI (Periostat)已被FDA批准用于治疗牙周病。目前针对某些MMPs的选择性抑制剂的研究工作提供了大量的小分子作为有效的MMPIs,其中一些有效的候选药物正处于治疗各种疾病(如关节炎和不同癌症)的临床试验的不同阶段。MMPIs对特定MMPs的选择性主要取决于其结构模板或支架及其取代基的变化。因此,结合传统的、基于机制的和基于结构的方法可能有助于特定mmpi的未来发展。近年来,研究重点是设计和开发具有羟基肟酸片段的MMPIs,这是一个强Zn(II)结合基团,导致它们与MMPs的酶位点具有高亲和力。本文讨论了基于羟肟酸的MMPIs的相互作用机制、构效关系(SAR)、定量构效关系(QSAR)、最新进展和临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydroxamic acids as matrix metalloproteinase inhibitors.

Matrix metalloproteinases (MMPs), an increasing family of zinc- and calcium-dependent endopeptidases, are involved in both the tissue remodeling and the degradation of extracellular matrix (ECM). These enzymes have been a pharmaceutical target for over 25 years in order to develop many families of therapeutically important synthetic matrix metalloproteinase inhibitors (MMPIs) for the treatment of several serious pathologies. Although clinical trials on most of the MMPIs gave disappointing results, at least one MMPI (Periostat) has been approved by the FDA for the treatment of periodontal disease. Current research efforts on the development of selective inhibitors toward certain MMPs gave a vast number of small molecules as potent MMPIs, of which, some of the effective candidates are in their various stages of (pre)clinical trials for the treatment of various diseases such as arthritis and different cancers. The selectivity of MMPIs toward specific MMPs depends mainly on their structural templates or scaffolds and the variations in their substituents. Thus, the combination of traditional, mechanism-based, and structural-based approaches may help for the future development of specific MMPIs. In recent years, research focuses on the design and development of MMPIs possess a hydroxamic acid moiety, a strong Zn(II)-binding group, which leads to their high-affinity binding to the enzymic sites of the MMPs. We herein discuss the hydroxamic acid-based MMPIs with respect to their mechanism of interaction, structure-activity relationship (SAR), quantitative structure-activity relationship (QSAR), recent development, and clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experientia supplementum (2012)
Experientia supplementum (2012) Medicine-Medicine (all)
CiteScore
3.30
自引率
0.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信