基于多核学习的异构特征面部动作识别。

T Senechal, V Rapp, H Salam, R Seguier, K Bailly, L Prevost
{"title":"基于多核学习的异构特征面部动作识别。","authors":"T Senechal,&nbsp;V Rapp,&nbsp;H Salam,&nbsp;R Seguier,&nbsp;K Bailly,&nbsp;L Prevost","doi":"10.1109/TSMCB.2012.2193567","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents our response to the first international challenge on facial emotion recognition and analysis. We propose to combine different types of features to automatically detect action units (AUs) in facial images. We use one multikernel support vector machine (SVM) for each AU we want to detect. The first kernel matrix is computed using local Gabor binary pattern histograms and a histogram intersection kernel. The second kernel matrix is computed from active appearance model coefficients and a radial basis function kernel. During the training step, we combine these two types of features using the recently proposed SimpleMKL algorithm. SVM outputs are then averaged to exploit temporal information in the sequence. To evaluate our system, we perform deep experimentation on several key issues: influence of features and kernel function in histogram-based SVM approaches, influence of spatially independent information versus geometric local appearance information and benefits of combining both, sensitivity to training data, and interest of temporal context adaptation. We also compare our results with those of the other participants and try to explain why our method had the best performance during the facial expression recognition and analysis challenge. </p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"993-1005"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2193567","citationCount":"136","resultStr":"{\"title\":\"Facial Action Recognition Combining Heterogeneous Features via Multikernel Learning.\",\"authors\":\"T Senechal,&nbsp;V Rapp,&nbsp;H Salam,&nbsp;R Seguier,&nbsp;K Bailly,&nbsp;L Prevost\",\"doi\":\"10.1109/TSMCB.2012.2193567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents our response to the first international challenge on facial emotion recognition and analysis. We propose to combine different types of features to automatically detect action units (AUs) in facial images. We use one multikernel support vector machine (SVM) for each AU we want to detect. The first kernel matrix is computed using local Gabor binary pattern histograms and a histogram intersection kernel. The second kernel matrix is computed from active appearance model coefficients and a radial basis function kernel. During the training step, we combine these two types of features using the recently proposed SimpleMKL algorithm. SVM outputs are then averaged to exploit temporal information in the sequence. To evaluate our system, we perform deep experimentation on several key issues: influence of features and kernel function in histogram-based SVM approaches, influence of spatially independent information versus geometric local appearance information and benefits of combining both, sensitivity to training data, and interest of temporal context adaptation. We also compare our results with those of the other participants and try to explain why our method had the best performance during the facial expression recognition and analysis challenge. </p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\" \",\"pages\":\"993-1005\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2193567\",\"citationCount\":\"136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2012.2193567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2012.2193567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

摘要

本文介绍了我们对面部情绪识别和分析的第一个国际挑战的回应。我们提出结合不同类型的特征来自动检测面部图像中的动作单元。我们对每个要检测的AU使用一个多核支持向量机(SVM)。第一个核矩阵是使用局部Gabor二值模式直方图和直方图交集核计算的。第二核矩阵由活动外观模型系数和径向基函数核计算得到。在训练步骤中,我们使用最近提出的SimpleMKL算法将这两种类型的特征结合起来。然后对支持向量机的输出进行平均,以利用序列中的时间信息。为了评估我们的系统,我们对几个关键问题进行了深入的实验:特征和核函数在基于直方图的支持向量机方法中的影响,空间独立信息与几何局部外观信息的影响以及两者结合的好处,对训练数据的敏感性,以及对时间上下文适应的兴趣。我们还将我们的结果与其他参与者的结果进行了比较,并试图解释为什么我们的方法在面部表情识别和分析挑战中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial Action Recognition Combining Heterogeneous Features via Multikernel Learning.

This paper presents our response to the first international challenge on facial emotion recognition and analysis. We propose to combine different types of features to automatically detect action units (AUs) in facial images. We use one multikernel support vector machine (SVM) for each AU we want to detect. The first kernel matrix is computed using local Gabor binary pattern histograms and a histogram intersection kernel. The second kernel matrix is computed from active appearance model coefficients and a radial basis function kernel. During the training step, we combine these two types of features using the recently proposed SimpleMKL algorithm. SVM outputs are then averaged to exploit temporal information in the sequence. To evaluate our system, we perform deep experimentation on several key issues: influence of features and kernel function in histogram-based SVM approaches, influence of spatially independent information versus geometric local appearance information and benefits of combining both, sensitivity to training data, and interest of temporal context adaptation. We also compare our results with those of the other participants and try to explain why our method had the best performance during the facial expression recognition and analysis challenge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信