J Ibrini, S Fadel, R S Chana, N Brunskill, B Wagner, T S Johnson, A M El Nahas
{"title":"白蛋白诱导的上皮间质转化。","authors":"J Ibrini, S Fadel, R S Chana, N Brunskill, B Wagner, T S Johnson, A M El Nahas","doi":"10.1159/000336822","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Progressive chronic kidney disease is often associated with albuminuria and renal fibrosis linked to the accumulation of myofibroblasts producing extracellular matrix. Renal myofibroblasts are derived from a number of cells including tubular epithelial cells (TECs) through epithelial mesenchymal transformation (EMT). This study explores the hypothesis that exposure of TECs to albumin induces EMT.</p><p><strong>Methods: </strong>Normal rat TECs (NRK52E) were exposed in culture to de-lipidated bovine serum albumin (dBSA; 10 mg/ml) for 2, 4 and 6 days. Binding/uptake of fluoresceined albumin by PTCs was evaluated. Transformation into myofibroblasts was assessed by light and electron microscopy, immunofluorescence and Western blotting for α-smooth muscle actin (α-SMA), E-cadherin and transforming growth factor-β1 (TGF-β1). We also investigated the expression of fibroblast-specific protein-1 (FSP-1) and collagens I, III and IV. TGF-β1 biological activity, mRNA and protein were measured. A neutralising anti-TGF-β1 antibody was used to analyse the role of TGF-β1 in albumin-induced EMT.</p><p><strong>Results: </strong>Exposure of TECs to dBSA led to binding/uptake of albumin as well as fibroblastic morphological changes. Incubation of TECs with dBSA caused a reduction of TEC marker E-cadherin (ANOVA p = 0.0002) and de novo expression of fibroblast markers α-SMA and FSP-1 (ANOVA p = 0.0001) in a time-dependent manner. It also increased expression and activity of TGF-β1. Neutralisation of TGF-β1 significantly reduced EMT (p < 0.01).</p><p><strong>Conclusion: </strong>This study demonstrates that in vitro, albumin induces the transformation of TECs into cells with myofibroblast characteristics; a process that may be TGF-β1 dependent.</p>","PeriodicalId":18993,"journal":{"name":"Nephron Experimental Nephrology","volume":"120 3","pages":"e91-102"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000336822","citationCount":"22","resultStr":"{\"title\":\"Albumin-induced epithelial mesenchymal transformation.\",\"authors\":\"J Ibrini, S Fadel, R S Chana, N Brunskill, B Wagner, T S Johnson, A M El Nahas\",\"doi\":\"10.1159/000336822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Progressive chronic kidney disease is often associated with albuminuria and renal fibrosis linked to the accumulation of myofibroblasts producing extracellular matrix. Renal myofibroblasts are derived from a number of cells including tubular epithelial cells (TECs) through epithelial mesenchymal transformation (EMT). This study explores the hypothesis that exposure of TECs to albumin induces EMT.</p><p><strong>Methods: </strong>Normal rat TECs (NRK52E) were exposed in culture to de-lipidated bovine serum albumin (dBSA; 10 mg/ml) for 2, 4 and 6 days. Binding/uptake of fluoresceined albumin by PTCs was evaluated. Transformation into myofibroblasts was assessed by light and electron microscopy, immunofluorescence and Western blotting for α-smooth muscle actin (α-SMA), E-cadherin and transforming growth factor-β1 (TGF-β1). We also investigated the expression of fibroblast-specific protein-1 (FSP-1) and collagens I, III and IV. TGF-β1 biological activity, mRNA and protein were measured. A neutralising anti-TGF-β1 antibody was used to analyse the role of TGF-β1 in albumin-induced EMT.</p><p><strong>Results: </strong>Exposure of TECs to dBSA led to binding/uptake of albumin as well as fibroblastic morphological changes. Incubation of TECs with dBSA caused a reduction of TEC marker E-cadherin (ANOVA p = 0.0002) and de novo expression of fibroblast markers α-SMA and FSP-1 (ANOVA p = 0.0001) in a time-dependent manner. It also increased expression and activity of TGF-β1. Neutralisation of TGF-β1 significantly reduced EMT (p < 0.01).</p><p><strong>Conclusion: </strong>This study demonstrates that in vitro, albumin induces the transformation of TECs into cells with myofibroblast characteristics; a process that may be TGF-β1 dependent.</p>\",\"PeriodicalId\":18993,\"journal\":{\"name\":\"Nephron Experimental Nephrology\",\"volume\":\"120 3\",\"pages\":\"e91-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000336822\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nephron Experimental Nephrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000336822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nephron Experimental Nephrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000336822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Background: Progressive chronic kidney disease is often associated with albuminuria and renal fibrosis linked to the accumulation of myofibroblasts producing extracellular matrix. Renal myofibroblasts are derived from a number of cells including tubular epithelial cells (TECs) through epithelial mesenchymal transformation (EMT). This study explores the hypothesis that exposure of TECs to albumin induces EMT.
Methods: Normal rat TECs (NRK52E) were exposed in culture to de-lipidated bovine serum albumin (dBSA; 10 mg/ml) for 2, 4 and 6 days. Binding/uptake of fluoresceined albumin by PTCs was evaluated. Transformation into myofibroblasts was assessed by light and electron microscopy, immunofluorescence and Western blotting for α-smooth muscle actin (α-SMA), E-cadherin and transforming growth factor-β1 (TGF-β1). We also investigated the expression of fibroblast-specific protein-1 (FSP-1) and collagens I, III and IV. TGF-β1 biological activity, mRNA and protein were measured. A neutralising anti-TGF-β1 antibody was used to analyse the role of TGF-β1 in albumin-induced EMT.
Results: Exposure of TECs to dBSA led to binding/uptake of albumin as well as fibroblastic morphological changes. Incubation of TECs with dBSA caused a reduction of TEC marker E-cadherin (ANOVA p = 0.0002) and de novo expression of fibroblast markers α-SMA and FSP-1 (ANOVA p = 0.0001) in a time-dependent manner. It also increased expression and activity of TGF-β1. Neutralisation of TGF-β1 significantly reduced EMT (p < 0.01).
Conclusion: This study demonstrates that in vitro, albumin induces the transformation of TECs into cells with myofibroblast characteristics; a process that may be TGF-β1 dependent.