Hongzhi Wang, Jung Wook Suh, Sandhitsu Das, John Pluta, Murat Altinay, Paul Yushkevich
{"title":"基于回归的标签融合多图谱分割。","authors":"Hongzhi Wang, Jung Wook Suh, Sandhitsu Das, John Pluta, Murat Altinay, Paul Yushkevich","doi":"10.1109/CVPR.2011.5995382","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic segmentation using multi-atlas label fusion has been widely applied in medical image analysis. To simplify the label fusion problem, most methods implicitly make a strong assumption that the segmentation errors produced by different atlases are uncorrelated. We show that violating this assumption significantly reduces the efficiency of multi-atlas segmentation. To address this problem, we propose a regression-based approach for label fusion. Our experiments on segmenting the hippocampus in magnetic resonance images (MRI) show significant improvement over previous label fusion techniques.</p>","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":" ","pages":"1113-1120"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343877/pdf/nihms366473.pdf","citationCount":"0","resultStr":"{\"title\":\"Regression-Based Label Fusion for Multi-Atlas Segmentation.\",\"authors\":\"Hongzhi Wang, Jung Wook Suh, Sandhitsu Das, John Pluta, Murat Altinay, Paul Yushkevich\",\"doi\":\"10.1109/CVPR.2011.5995382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic segmentation using multi-atlas label fusion has been widely applied in medical image analysis. To simplify the label fusion problem, most methods implicitly make a strong assumption that the segmentation errors produced by different atlases are uncorrelated. We show that violating this assumption significantly reduces the efficiency of multi-atlas segmentation. To address this problem, we propose a regression-based approach for label fusion. Our experiments on segmenting the hippocampus in magnetic resonance images (MRI) show significant improvement over previous label fusion techniques.</p>\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\" \",\"pages\":\"1113-1120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343877/pdf/nihms366473.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2011.5995382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regression-Based Label Fusion for Multi-Atlas Segmentation.
Automatic segmentation using multi-atlas label fusion has been widely applied in medical image analysis. To simplify the label fusion problem, most methods implicitly make a strong assumption that the segmentation errors produced by different atlases are uncorrelated. We show that violating this assumption significantly reduces the efficiency of multi-atlas segmentation. To address this problem, we propose a regression-based approach for label fusion. Our experiments on segmenting the hippocampus in magnetic resonance images (MRI) show significant improvement over previous label fusion techniques.