提高蛋白质穿线精度。

Jian Peng, Jinbo Xu
{"title":"提高蛋白质穿线精度。","authors":"Jian Peng,&nbsp;Jinbo Xu","doi":"10.1007/978-3-642-02008-7_3","DOIUrl":null,"url":null,"abstract":"<p><p>Protein threading is one of the most successful protein structure prediction methods. Most protein threading methods use a scoring function linearly combining sequence and structure features to measure the quality of a sequence-template alignment so that a dynamic programming algorithm can be used to optimize the scoring function. However, a linear scoring function cannot fully exploit interdependency among features and thus, limits alignment accuracy.This paper presents a nonlinear scoring function for protein threading, which not only can model interactions among different protein features, but also can be efficiently optimized using a dynamic programming algorithm. We achieve this by modeling the threading problem using a probabilistic graphical model Conditional Random Fields (CRF) and training the model using the gradient tree boosting algorithm. The resultant model is a nonlinear scoring function consisting of a collection of regression trees. Each regression tree models a type of nonlinear relationship among sequence and structure features. Experimental results indicate that this new threading model can effectively leverage weak biological signals and improve both alignment accuracy and fold recognition rate greatly.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"5541 ","pages":"31-45"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-02008-7_3","citationCount":"69","resultStr":"{\"title\":\"Boosting Protein Threading Accuracy.\",\"authors\":\"Jian Peng,&nbsp;Jinbo Xu\",\"doi\":\"10.1007/978-3-642-02008-7_3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein threading is one of the most successful protein structure prediction methods. Most protein threading methods use a scoring function linearly combining sequence and structure features to measure the quality of a sequence-template alignment so that a dynamic programming algorithm can be used to optimize the scoring function. However, a linear scoring function cannot fully exploit interdependency among features and thus, limits alignment accuracy.This paper presents a nonlinear scoring function for protein threading, which not only can model interactions among different protein features, but also can be efficiently optimized using a dynamic programming algorithm. We achieve this by modeling the threading problem using a probabilistic graphical model Conditional Random Fields (CRF) and training the model using the gradient tree boosting algorithm. The resultant model is a nonlinear scoring function consisting of a collection of regression trees. Each regression tree models a type of nonlinear relationship among sequence and structure features. Experimental results indicate that this new threading model can effectively leverage weak biological signals and improve both alignment accuracy and fold recognition rate greatly.</p>\",\"PeriodicalId\":74675,\"journal\":{\"name\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"volume\":\"5541 \",\"pages\":\"31-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-642-02008-7_3\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-642-02008-7_3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-02008-7_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

蛋白质穿线是目前最成功的蛋白质结构预测方法之一。大多数蛋白质穿线方法使用序列和结构特征线性结合的评分函数来衡量序列-模板比对的质量,因此可以使用动态规划算法来优化评分函数。然而,线性评分函数不能充分利用特征之间的相互依赖性,因此限制了对齐精度。本文提出了一种用于蛋白质线程的非线性评分函数,该函数不仅可以模拟不同蛋白质特征之间的相互作用,而且可以使用动态规划算法进行有效的优化。我们通过使用概率图形模型条件随机场(CRF)建模线程问题并使用梯度树增强算法训练模型来实现这一点。所得模型是一个由回归树集合组成的非线性评分函数。每个回归树都对序列和结构特征之间的一种非线性关系进行建模。实验结果表明,该模型可以有效地利用微弱的生物信号,大大提高对线精度和折痕识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting Protein Threading Accuracy.

Protein threading is one of the most successful protein structure prediction methods. Most protein threading methods use a scoring function linearly combining sequence and structure features to measure the quality of a sequence-template alignment so that a dynamic programming algorithm can be used to optimize the scoring function. However, a linear scoring function cannot fully exploit interdependency among features and thus, limits alignment accuracy.This paper presents a nonlinear scoring function for protein threading, which not only can model interactions among different protein features, but also can be efficiently optimized using a dynamic programming algorithm. We achieve this by modeling the threading problem using a probabilistic graphical model Conditional Random Fields (CRF) and training the model using the gradient tree boosting algorithm. The resultant model is a nonlinear scoring function consisting of a collection of regression trees. Each regression tree models a type of nonlinear relationship among sequence and structure features. Experimental results indicate that this new threading model can effectively leverage weak biological signals and improve both alignment accuracy and fold recognition rate greatly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信