动态bsamzier地图。

S Ulbrich, V R de Angulo, T Asfour, C Torras, R Dillmann
{"title":"动态bsamzier地图。","authors":"S Ulbrich,&nbsp;V R de Angulo,&nbsp;T Asfour,&nbsp;C Torras,&nbsp;R Dillmann","doi":"10.1109/TSMCB.2012.2188507","DOIUrl":null,"url":null,"abstract":"<p><p>The kinematics of a robot with many degrees of freedom is a very complex function. Learning this function for a large workspace with a good precision requires a huge number of training samples, i.e., robot movements. In this paper, we introduce the Kinematic Bézier Map (KB-Map), a parameterizable model without the generality of other systems but whose structure readily incorporates some of the geometric constraints of a kinematic function. In this way, the number of training samples required is drastically reduced. Moreover, the simplicity of the model reduces learning to solving a linear least squares problem. Systematic experiments have been carried out showing the excellent interpolation and extrapolation capabilities of KB-Maps and their relatively low sensitivity to noise. </p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1215-30"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2188507","citationCount":"22","resultStr":"{\"title\":\"Kinematic Bézier Maps.\",\"authors\":\"S Ulbrich,&nbsp;V R de Angulo,&nbsp;T Asfour,&nbsp;C Torras,&nbsp;R Dillmann\",\"doi\":\"10.1109/TSMCB.2012.2188507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The kinematics of a robot with many degrees of freedom is a very complex function. Learning this function for a large workspace with a good precision requires a huge number of training samples, i.e., robot movements. In this paper, we introduce the Kinematic Bézier Map (KB-Map), a parameterizable model without the generality of other systems but whose structure readily incorporates some of the geometric constraints of a kinematic function. In this way, the number of training samples required is drastically reduced. Moreover, the simplicity of the model reduces learning to solving a linear least squares problem. Systematic experiments have been carried out showing the excellent interpolation and extrapolation capabilities of KB-Maps and their relatively low sensitivity to noise. </p>\",\"PeriodicalId\":55006,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"volume\":\" \",\"pages\":\"1215-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2188507\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCB.2012.2188507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2012.2188507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

多自由度机器人的运动学是一个非常复杂的函数。对于一个大的工作空间,以良好的精度学习这个函数需要大量的训练样本,即机器人的运动。在本文中,我们介绍了运动学bsamizier映射(KB-Map),这是一种可参数化的模型,没有其他系统的一般性,但其结构很容易包含运动函数的一些几何约束。这样,所需的训练样本数量就大大减少了。此外,该模型的简单性将学习简化为求解线性最小二乘问题。系统的实验表明,KB-Maps具有良好的插值和外推能力,对噪声的敏感性相对较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic Bézier Maps.

The kinematics of a robot with many degrees of freedom is a very complex function. Learning this function for a large workspace with a good precision requires a huge number of training samples, i.e., robot movements. In this paper, we introduce the Kinematic Bézier Map (KB-Map), a parameterizable model without the generality of other systems but whose structure readily incorporates some of the geometric constraints of a kinematic function. In this way, the number of training samples required is drastically reduced. Moreover, the simplicity of the model reduces learning to solving a linear least squares problem. Systematic experiments have been carried out showing the excellent interpolation and extrapolation capabilities of KB-Maps and their relatively low sensitivity to noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信