{"title":"不对称双-1,2,3-三唑的抗菌研究。","authors":"Abid H Banday, Shameem A Shameem, Bashir A Ganai","doi":"10.1186/2191-2858-2-13","DOIUrl":null,"url":null,"abstract":"<p><p> Aryl azides were treated with allenylmagnesium bromide to generate 1,5-disubstituted butynyl 1,2,3-triazoles in a domino fashion, which upon Cu(I) catalyzed 1,3-dipolar cycloaddition with aryl azides afforded novel bis-1,2,3-triazoles in quantitative yields. The final products were analyzed for their antimicrobial activities against a panel of bacterial and fungal strains which revealed the products to be potent antimicrobials.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"2 ","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-2-13","citationCount":"23","resultStr":"{\"title\":\"Antimicrobial studies of unsymmetrical bis-1,2,3-triazoles.\",\"authors\":\"Abid H Banday, Shameem A Shameem, Bashir A Ganai\",\"doi\":\"10.1186/2191-2858-2-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Aryl azides were treated with allenylmagnesium bromide to generate 1,5-disubstituted butynyl 1,2,3-triazoles in a domino fashion, which upon Cu(I) catalyzed 1,3-dipolar cycloaddition with aryl azides afforded novel bis-1,2,3-triazoles in quantitative yields. The final products were analyzed for their antimicrobial activities against a panel of bacterial and fungal strains which revealed the products to be potent antimicrobials.</p>\",\"PeriodicalId\":19639,\"journal\":{\"name\":\"Organic and Medicinal Chemistry Letters\",\"volume\":\"2 \",\"pages\":\"13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2191-2858-2-13\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic and Medicinal Chemistry Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2191-2858-2-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Medicinal Chemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2191-2858-2-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antimicrobial studies of unsymmetrical bis-1,2,3-triazoles.
Aryl azides were treated with allenylmagnesium bromide to generate 1,5-disubstituted butynyl 1,2,3-triazoles in a domino fashion, which upon Cu(I) catalyzed 1,3-dipolar cycloaddition with aryl azides afforded novel bis-1,2,3-triazoles in quantitative yields. The final products were analyzed for their antimicrobial activities against a panel of bacterial and fungal strains which revealed the products to be potent antimicrobials.