扩展充分成因模型,以描述稳定单位处理价值假设(SUTVA)。

Sharon Schwartz, Nicolle M Gatto, Ulka B Campbell
{"title":"扩展充分成因模型,以描述稳定单位处理价值假设(SUTVA)。","authors":"Sharon Schwartz, Nicolle M Gatto, Ulka B Campbell","doi":"10.1186/1742-5573-9-3","DOIUrl":null,"url":null,"abstract":"<p><p> Causal inference requires an understanding of the conditions under which association equals causation. The exchangeability or no confounding assumption is well known and well understood as central to this task. More recently the epidemiologic literature has described additional assumptions related to the stability of causal effects. In this paper we extend the Sufficient Component Cause Model to represent one expression of this stability assumption--the Stable Unit Treatment Value Assumption. Approaching SUTVA from an SCC model helps clarify what SUTVA is and reinforces the connections between interaction and SUTVA.</p>","PeriodicalId":87082,"journal":{"name":"Epidemiologic perspectives & innovations : EP+I","volume":"9 ","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351730/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extending the sufficient component cause model to describe the Stable Unit Treatment Value Assumption (SUTVA).\",\"authors\":\"Sharon Schwartz, Nicolle M Gatto, Ulka B Campbell\",\"doi\":\"10.1186/1742-5573-9-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Causal inference requires an understanding of the conditions under which association equals causation. The exchangeability or no confounding assumption is well known and well understood as central to this task. More recently the epidemiologic literature has described additional assumptions related to the stability of causal effects. In this paper we extend the Sufficient Component Cause Model to represent one expression of this stability assumption--the Stable Unit Treatment Value Assumption. Approaching SUTVA from an SCC model helps clarify what SUTVA is and reinforces the connections between interaction and SUTVA.</p>\",\"PeriodicalId\":87082,\"journal\":{\"name\":\"Epidemiologic perspectives & innovations : EP+I\",\"volume\":\"9 \",\"pages\":\"3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351730/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic perspectives & innovations : EP+I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1742-5573-9-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic perspectives & innovations : EP+I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-5573-9-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

因果推断需要了解关联等于因果关系的条件。众所周知,可交换性或无混杂性假设是这一任务的核心。最近,流行病学文献描述了与因果效应稳定性相关的其他假设。在本文中,我们扩展了充分成因模型,以表示这种稳定性假设的一种表达方式--稳定单位治疗值假设。从 SCC 模型切入 SUTVA 有助于澄清什么是 SUTVA,并加强交互作用与 SUTVA 之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extending the sufficient component cause model to describe the Stable Unit Treatment Value Assumption (SUTVA).

Extending the sufficient component cause model to describe the Stable Unit Treatment Value Assumption (SUTVA).

Extending the sufficient component cause model to describe the Stable Unit Treatment Value Assumption (SUTVA).

Extending the sufficient component cause model to describe the Stable Unit Treatment Value Assumption (SUTVA).

Causal inference requires an understanding of the conditions under which association equals causation. The exchangeability or no confounding assumption is well known and well understood as central to this task. More recently the epidemiologic literature has described additional assumptions related to the stability of causal effects. In this paper we extend the Sufficient Component Cause Model to represent one expression of this stability assumption--the Stable Unit Treatment Value Assumption. Approaching SUTVA from an SCC model helps clarify what SUTVA is and reinforces the connections between interaction and SUTVA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信