{"title":"丝裂原活化蛋白激酶通路在TGF-β诱导的上皮-间质转化中的作用。","authors":"Ting Gui, Yujing Sun, Aiko Shimokado, Yasuteru Muragaki","doi":"10.1155/2012/289243","DOIUrl":null,"url":null,"abstract":"<p><p>The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond appropriately, especially during the epithelial-mesenchymal transition (EMT). EMT is an important process during embryonic development, fibrosis, and tumor progression in which epithelial cells acquire mesenchymal, fibroblast-like properties and show reduced intercellular adhesion and increased motility. TGF-β signaling is the first pathway to be described as an inducer of EMT, and its relationship with the Smad family is already well characterized. Studies of four members of the MAPK family in different biological systems have shown that the MAPK and TGF-β signaling pathways interact with each other and have a synergistic effect on the secretion of additional growth factors and cytokines that in turn promote EMT. In this paper, we present background on the regulation and function of MAPKs and their cascades, highlight the mechanisms of MAPK crosstalk with TGF-β signaling, and discuss the roles of MAPKs in EMT.</p>","PeriodicalId":89176,"journal":{"name":"Journal of signal transduction","volume":"2012 ","pages":"289243"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/289243","citationCount":"120","resultStr":"{\"title\":\"The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition.\",\"authors\":\"Ting Gui, Yujing Sun, Aiko Shimokado, Yasuteru Muragaki\",\"doi\":\"10.1155/2012/289243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond appropriately, especially during the epithelial-mesenchymal transition (EMT). EMT is an important process during embryonic development, fibrosis, and tumor progression in which epithelial cells acquire mesenchymal, fibroblast-like properties and show reduced intercellular adhesion and increased motility. TGF-β signaling is the first pathway to be described as an inducer of EMT, and its relationship with the Smad family is already well characterized. Studies of four members of the MAPK family in different biological systems have shown that the MAPK and TGF-β signaling pathways interact with each other and have a synergistic effect on the secretion of additional growth factors and cytokines that in turn promote EMT. In this paper, we present background on the regulation and function of MAPKs and their cascades, highlight the mechanisms of MAPK crosstalk with TGF-β signaling, and discuss the roles of MAPKs in EMT.</p>\",\"PeriodicalId\":89176,\"journal\":{\"name\":\"Journal of signal transduction\",\"volume\":\"2012 \",\"pages\":\"289243\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/289243\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of signal transduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/289243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of signal transduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/289243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition.
The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond appropriately, especially during the epithelial-mesenchymal transition (EMT). EMT is an important process during embryonic development, fibrosis, and tumor progression in which epithelial cells acquire mesenchymal, fibroblast-like properties and show reduced intercellular adhesion and increased motility. TGF-β signaling is the first pathway to be described as an inducer of EMT, and its relationship with the Smad family is already well characterized. Studies of four members of the MAPK family in different biological systems have shown that the MAPK and TGF-β signaling pathways interact with each other and have a synergistic effect on the secretion of additional growth factors and cytokines that in turn promote EMT. In this paper, we present background on the regulation and function of MAPKs and their cascades, highlight the mechanisms of MAPK crosstalk with TGF-β signaling, and discuss the roles of MAPKs in EMT.