{"title":"n叠准周期瓷砖的高维晶体学。","authors":"Sofia Deloudi, Walter Steurer","doi":"10.1107/S0108767312001705","DOIUrl":null,"url":null,"abstract":"<p><p>Crystallography and periodic average structures (PASs) of two-dimensional (2D) quasiperiodic tilings with N-fold symmetry (N-QPTs with N = 7, 8, 9, 10, 11, 12, 13, 15) were studied using the higher-dimensional approach. By identifying the best (most representative) PASs for each case, it was found that the complexity of the PASs and the degree of average periodicity (DAP) strongly depend on the dimensionality and topology of the hypersurfaces (HSs) carrying the structural information. The distribution of deviations from periodicity is given by the HSs projected upon physical space. The 8-, 10- and 12-QPTs with their 2D HSs have the highest DAP. In the case of the 7-, 9-, 11-, 13- and 15-QPTs, the dimensionality of the HSs is greater than two, and is therefore reduced in the projection upon 2D physical space. This results in a non-homogeneous distribution of deviations from the periodic average lattice, and therefore in a higher complexity of the PASs. Contrary to the 7- and 9-QPTs, which still have representative PASs and DAPs, the 11-, 13- and 15-QPTs have a very low DAP.</p>","PeriodicalId":7400,"journal":{"name":"Acta Crystallographica Section A","volume":"68 Pt 2","pages":"266-77"},"PeriodicalIF":1.8000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108767312001705","citationCount":"3","resultStr":"{\"title\":\"Higher-dimensional crystallography of N-fold quasiperiodic tilings.\",\"authors\":\"Sofia Deloudi, Walter Steurer\",\"doi\":\"10.1107/S0108767312001705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crystallography and periodic average structures (PASs) of two-dimensional (2D) quasiperiodic tilings with N-fold symmetry (N-QPTs with N = 7, 8, 9, 10, 11, 12, 13, 15) were studied using the higher-dimensional approach. By identifying the best (most representative) PASs for each case, it was found that the complexity of the PASs and the degree of average periodicity (DAP) strongly depend on the dimensionality and topology of the hypersurfaces (HSs) carrying the structural information. The distribution of deviations from periodicity is given by the HSs projected upon physical space. The 8-, 10- and 12-QPTs with their 2D HSs have the highest DAP. In the case of the 7-, 9-, 11-, 13- and 15-QPTs, the dimensionality of the HSs is greater than two, and is therefore reduced in the projection upon 2D physical space. This results in a non-homogeneous distribution of deviations from the periodic average lattice, and therefore in a higher complexity of the PASs. Contrary to the 7- and 9-QPTs, which still have representative PASs and DAPs, the 11-, 13- and 15-QPTs have a very low DAP.</p>\",\"PeriodicalId\":7400,\"journal\":{\"name\":\"Acta Crystallographica Section A\",\"volume\":\"68 Pt 2\",\"pages\":\"266-77\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S0108767312001705\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108767312001705\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S0108767312001705","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Higher-dimensional crystallography of N-fold quasiperiodic tilings.
Crystallography and periodic average structures (PASs) of two-dimensional (2D) quasiperiodic tilings with N-fold symmetry (N-QPTs with N = 7, 8, 9, 10, 11, 12, 13, 15) were studied using the higher-dimensional approach. By identifying the best (most representative) PASs for each case, it was found that the complexity of the PASs and the degree of average periodicity (DAP) strongly depend on the dimensionality and topology of the hypersurfaces (HSs) carrying the structural information. The distribution of deviations from periodicity is given by the HSs projected upon physical space. The 8-, 10- and 12-QPTs with their 2D HSs have the highest DAP. In the case of the 7-, 9-, 11-, 13- and 15-QPTs, the dimensionality of the HSs is greater than two, and is therefore reduced in the projection upon 2D physical space. This results in a non-homogeneous distribution of deviations from the periodic average lattice, and therefore in a higher complexity of the PASs. Contrary to the 7- and 9-QPTs, which still have representative PASs and DAPs, the 11-, 13- and 15-QPTs have a very low DAP.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.