{"title":"分子置换的数学方面。2运动空间的几何学。","authors":"Gregory S Chirikjian, Yan Yan","doi":"10.1107/S010876731105118X","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular replacement (MR) is a well established computational method for phasing in macromolecular crystallography. In MR searches, spaces of motions are explored for determining the appropriate placement of rigid models of macromolecules in crystallographic asymmetric units. In the first paper of this series, it was shown that this space of motions, when endowed with an appropriate composition operator, forms an algebraic structure called a quasigroup. In this second paper, the geometric properties of these MR search spaces are explored and analyzed. This analysis includes the local differential geometry, global geometry and symmetry properties of these spaces.</p>","PeriodicalId":7400,"journal":{"name":"Acta Crystallographica Section A","volume":"68 Pt 2","pages":"208-21"},"PeriodicalIF":1.8000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S010876731105118X","citationCount":"13","resultStr":"{\"title\":\"Mathematical aspects of molecular replacement. II. Geometry of motion spaces.\",\"authors\":\"Gregory S Chirikjian, Yan Yan\",\"doi\":\"10.1107/S010876731105118X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular replacement (MR) is a well established computational method for phasing in macromolecular crystallography. In MR searches, spaces of motions are explored for determining the appropriate placement of rigid models of macromolecules in crystallographic asymmetric units. In the first paper of this series, it was shown that this space of motions, when endowed with an appropriate composition operator, forms an algebraic structure called a quasigroup. In this second paper, the geometric properties of these MR search spaces are explored and analyzed. This analysis includes the local differential geometry, global geometry and symmetry properties of these spaces.</p>\",\"PeriodicalId\":7400,\"journal\":{\"name\":\"Acta Crystallographica Section A\",\"volume\":\"68 Pt 2\",\"pages\":\"208-21\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S010876731105118X\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S010876731105118X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S010876731105118X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical aspects of molecular replacement. II. Geometry of motion spaces.
Molecular replacement (MR) is a well established computational method for phasing in macromolecular crystallography. In MR searches, spaces of motions are explored for determining the appropriate placement of rigid models of macromolecules in crystallographic asymmetric units. In the first paper of this series, it was shown that this space of motions, when endowed with an appropriate composition operator, forms an algebraic structure called a quasigroup. In this second paper, the geometric properties of these MR search spaces are explored and analyzed. This analysis includes the local differential geometry, global geometry and symmetry properties of these spaces.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.