脑癌预后:临床生物信息学方法的独立验证。

Raffaele Fronza, Michele Tramonti, William R Atchley, Christine Nardini
{"title":"脑癌预后:临床生物信息学方法的独立验证。","authors":"Raffaele Fronza,&nbsp;Michele Tramonti,&nbsp;William R Atchley,&nbsp;Christine Nardini","doi":"10.1186/2043-9113-2-2","DOIUrl":null,"url":null,"abstract":"<p><p> Translational and evidence based medicine can take advantage of biotechnology advances that offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. The clinical information hidden in these data can be clarified with clinical bioinformatics approaches. We have recently proposed a method to analyze different layers of high-throughput (omic) data to preserve the emergent properties that appear in the cellular system when all molecular levels are interacting. We show here that this method applied to brain cancer data can uncover properties (i.e. molecules related to protective versus risky features in different types of brain cancers) that have been independently validated as survival markers, with potential important application in clinical practice.</p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":"2 ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-2-2","citationCount":"3","resultStr":"{\"title\":\"Brain cancer prognosis: independent validation of a clinical bioinformatics approach.\",\"authors\":\"Raffaele Fronza,&nbsp;Michele Tramonti,&nbsp;William R Atchley,&nbsp;Christine Nardini\",\"doi\":\"10.1186/2043-9113-2-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Translational and evidence based medicine can take advantage of biotechnology advances that offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. The clinical information hidden in these data can be clarified with clinical bioinformatics approaches. We have recently proposed a method to analyze different layers of high-throughput (omic) data to preserve the emergent properties that appear in the cellular system when all molecular levels are interacting. We show here that this method applied to brain cancer data can uncover properties (i.e. molecules related to protective versus risky features in different types of brain cancers) that have been independently validated as survival markers, with potential important application in clinical practice.</p>\",\"PeriodicalId\":73663,\"journal\":{\"name\":\"Journal of clinical bioinformatics\",\"volume\":\"2 \",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2043-9113-2-2\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2043-9113-2-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-2-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

转化医学和循证医学可以利用生物技术的进步,为筛选基因组、转录、转录后和转化观察的分子活动提供快速增长的各种高通量数据。这些数据中隐藏的临床信息可以用临床生物信息学方法来阐明。我们最近提出了一种方法来分析不同层的高通量(组学)数据,以保存当所有分子水平相互作用时出现在细胞系统中的涌现特性。我们在这里表明,将这种方法应用于脑癌数据可以揭示特性(即不同类型脑癌中与保护性和危险特征相关的分子),这些特性已被独立验证为生存标记,在临床实践中具有潜在的重要应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Brain cancer prognosis: independent validation of a clinical bioinformatics approach.

Brain cancer prognosis: independent validation of a clinical bioinformatics approach.

Translational and evidence based medicine can take advantage of biotechnology advances that offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. The clinical information hidden in these data can be clarified with clinical bioinformatics approaches. We have recently proposed a method to analyze different layers of high-throughput (omic) data to preserve the emergent properties that appear in the cellular system when all molecular levels are interacting. We show here that this method applied to brain cancer data can uncover properties (i.e. molecules related to protective versus risky features in different types of brain cancers) that have been independently validated as survival markers, with potential important application in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信