{"title":"兔的前段改变和比较房水蛋白质组学(美国眼科学会论文)。","authors":"Deepak P Edward, Rachida Bouhenni","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To use an integrated proteohistologic approach to gain insight into the anterior segment alterations in the buphthalmic rabbit.</p><p><strong>Methods: </strong>Eyes from 2- and 5-year-old buphthalmic and normal rabbits (n=20) were studied histologically. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of aqueous humor (AH) was used to determine differential protein expression between animal groups. Western blot and immunohistochemistry were performed on selected differentially expressed proteins identified by LC-MS/MS.</p><p><strong>Results: </strong>The buphthalmic rabbits manifested a mild clinical phenotype with typical angle anomalies that appeared progressive by histology. Significantly thickened Descemet's membrane (DM) and anterior lens capsule in all buphthalmic rabbits showed increased fibronectin and collagen-IV immunolabeling. LC-MS/MS applying stringent filtering criteria revealed significant differential expression of several AH proteins in these rabbits. The protein of interest in the 2-year-old group was histidine-rich glycoprotein, and those in the 5-year-old group included alpha-2-HS-glycoprotein, clusterin, apolipoprotein E, interphotoreceptor retinoid-binding protein, transthyretin, cochlin, gelsolin, haptoglobin, hemopexin, and beta-2 microglobulin. The proteomic data for selected proteins was validated by Western blot and immunohistochemistry. A wide range of functional groups were affected by the altered AH proteins. These included extracellular matrix modulation, regulation of apoptosis, oxidative stress, and protein transport.</p><p><strong>Conclusions: </strong>Multiple anterior segment alterations were histologically identified in the buphthalmic rabbits that showed progressive changes with age. The differentially expressed AH proteins in these rabbits suggest a multifunctional role for AH in modulating pathologic changes in DM, anterior lens capsule, and the angular meshwork in these animals.</p>","PeriodicalId":23166,"journal":{"name":"Transactions of the American Ophthalmological Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259673/pdf/1545-6110_v109_p066.pdf","citationCount":"0","resultStr":"{\"title\":\"Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis).\",\"authors\":\"Deepak P Edward, Rachida Bouhenni\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To use an integrated proteohistologic approach to gain insight into the anterior segment alterations in the buphthalmic rabbit.</p><p><strong>Methods: </strong>Eyes from 2- and 5-year-old buphthalmic and normal rabbits (n=20) were studied histologically. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of aqueous humor (AH) was used to determine differential protein expression between animal groups. Western blot and immunohistochemistry were performed on selected differentially expressed proteins identified by LC-MS/MS.</p><p><strong>Results: </strong>The buphthalmic rabbits manifested a mild clinical phenotype with typical angle anomalies that appeared progressive by histology. Significantly thickened Descemet's membrane (DM) and anterior lens capsule in all buphthalmic rabbits showed increased fibronectin and collagen-IV immunolabeling. LC-MS/MS applying stringent filtering criteria revealed significant differential expression of several AH proteins in these rabbits. The protein of interest in the 2-year-old group was histidine-rich glycoprotein, and those in the 5-year-old group included alpha-2-HS-glycoprotein, clusterin, apolipoprotein E, interphotoreceptor retinoid-binding protein, transthyretin, cochlin, gelsolin, haptoglobin, hemopexin, and beta-2 microglobulin. The proteomic data for selected proteins was validated by Western blot and immunohistochemistry. A wide range of functional groups were affected by the altered AH proteins. These included extracellular matrix modulation, regulation of apoptosis, oxidative stress, and protein transport.</p><p><strong>Conclusions: </strong>Multiple anterior segment alterations were histologically identified in the buphthalmic rabbits that showed progressive changes with age. The differentially expressed AH proteins in these rabbits suggest a multifunctional role for AH in modulating pathologic changes in DM, anterior lens capsule, and the angular meshwork in these animals.</p>\",\"PeriodicalId\":23166,\"journal\":{\"name\":\"Transactions of the American Ophthalmological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259673/pdf/1545-6110_v109_p066.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Ophthalmological Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Ophthalmological Society","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis).
Purpose: To use an integrated proteohistologic approach to gain insight into the anterior segment alterations in the buphthalmic rabbit.
Methods: Eyes from 2- and 5-year-old buphthalmic and normal rabbits (n=20) were studied histologically. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of aqueous humor (AH) was used to determine differential protein expression between animal groups. Western blot and immunohistochemistry were performed on selected differentially expressed proteins identified by LC-MS/MS.
Results: The buphthalmic rabbits manifested a mild clinical phenotype with typical angle anomalies that appeared progressive by histology. Significantly thickened Descemet's membrane (DM) and anterior lens capsule in all buphthalmic rabbits showed increased fibronectin and collagen-IV immunolabeling. LC-MS/MS applying stringent filtering criteria revealed significant differential expression of several AH proteins in these rabbits. The protein of interest in the 2-year-old group was histidine-rich glycoprotein, and those in the 5-year-old group included alpha-2-HS-glycoprotein, clusterin, apolipoprotein E, interphotoreceptor retinoid-binding protein, transthyretin, cochlin, gelsolin, haptoglobin, hemopexin, and beta-2 microglobulin. The proteomic data for selected proteins was validated by Western blot and immunohistochemistry. A wide range of functional groups were affected by the altered AH proteins. These included extracellular matrix modulation, regulation of apoptosis, oxidative stress, and protein transport.
Conclusions: Multiple anterior segment alterations were histologically identified in the buphthalmic rabbits that showed progressive changes with age. The differentially expressed AH proteins in these rabbits suggest a multifunctional role for AH in modulating pathologic changes in DM, anterior lens capsule, and the angular meshwork in these animals.