利用磁共振成像技术跟踪胎儿和出生后早期狒狒胼胝体的发育。

Q4 Medicine
Open Neuroimaging Journal Pub Date : 2011-01-01 Epub Date: 2011-11-18 DOI:10.2174/1874440001105010179
Kimberley A Phillips, Peter Kochunov
{"title":"利用磁共振成像技术跟踪胎儿和出生后早期狒狒胼胝体的发育。","authors":"Kimberley A Phillips,&nbsp;Peter Kochunov","doi":"10.2174/1874440001105010179","DOIUrl":null,"url":null,"abstract":"<p><p>Although the maturation of the corpus callosum (CC) can serve as a sensitive marker for normative antenatal and postnatal brain development, little is known about its development across this critical period. While high-resolution magnetic resonance imaging can provide an opportunity to examine normative brain development in humans, concerns remain over the exposure of developing fetuses to non-essential imaging. Nonhuman primates can provide a valuable model for normative brain maturation. Baboons share several important developmental characteristics with humans, including a highly orchestrated pattern of cerebral development. Developmental changes in total CC area and its subdivisions were examined across the antenatal (weeks 17 - 26 of 28 weeks total gestation) and early postnatal (to week 32) period in baboons (Papio hamadryas anubis). Thirteen fetal and sixteen infant baboons were studied using high-resolution MRI. During the period of primary gyrification, the total area of the CC increased by a magnitude of five. By postnatal week 32, the total CC area attained only 51% of the average adult area. CC subdivisions showed non-uniform increases in area, throughout development. The splenium showed the most maturation by postnatal week 32, attaining 55% of the average adult value. The subdivisions of the genu and anterior midbody showed the least maturation by postnatal week 32, attaining 50% and 49% of the average adult area. Thus, the CC of baboons shows continued growth past the postnatal period. These age-related changes in the developing baboon CC are consistent with the developmental course in humans.</p>","PeriodicalId":37431,"journal":{"name":"Open Neuroimaging Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256811/pdf/","citationCount":"9","resultStr":"{\"title\":\"Tracking development of the corpus callosum in fetal and early postnatal baboons using magnetic resonance imaging.\",\"authors\":\"Kimberley A Phillips,&nbsp;Peter Kochunov\",\"doi\":\"10.2174/1874440001105010179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the maturation of the corpus callosum (CC) can serve as a sensitive marker for normative antenatal and postnatal brain development, little is known about its development across this critical period. While high-resolution magnetic resonance imaging can provide an opportunity to examine normative brain development in humans, concerns remain over the exposure of developing fetuses to non-essential imaging. Nonhuman primates can provide a valuable model for normative brain maturation. Baboons share several important developmental characteristics with humans, including a highly orchestrated pattern of cerebral development. Developmental changes in total CC area and its subdivisions were examined across the antenatal (weeks 17 - 26 of 28 weeks total gestation) and early postnatal (to week 32) period in baboons (Papio hamadryas anubis). Thirteen fetal and sixteen infant baboons were studied using high-resolution MRI. During the period of primary gyrification, the total area of the CC increased by a magnitude of five. By postnatal week 32, the total CC area attained only 51% of the average adult area. CC subdivisions showed non-uniform increases in area, throughout development. The splenium showed the most maturation by postnatal week 32, attaining 55% of the average adult value. The subdivisions of the genu and anterior midbody showed the least maturation by postnatal week 32, attaining 50% and 49% of the average adult area. Thus, the CC of baboons shows continued growth past the postnatal period. These age-related changes in the developing baboon CC are consistent with the developmental course in humans.</p>\",\"PeriodicalId\":37431,\"journal\":{\"name\":\"Open Neuroimaging Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256811/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Neuroimaging Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874440001105010179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Neuroimaging Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874440001105010179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9

摘要

尽管胼胝体(CC)的成熟可以作为产前和产后正常大脑发育的敏感标志,但人们对其在这一关键时期的发育知之甚少。虽然高分辨率磁共振成像可以提供一个检查人类正常大脑发育的机会,但对发育中的胎儿暴露于非必要成像的担忧仍然存在。非人类灵长类动物可以为规范的大脑成熟提供有价值的模型。狒狒与人类有几个重要的发育特征,包括高度协调的大脑发育模式。研究了狒狒(Papio hamadryas anubis)在产前(总妊娠28周的第17 - 26周)和产后早期(至32周)期间总CC区及其细分的发育变化。使用高分辨率MRI对13只胎儿和16只婴儿狒狒进行了研究。在初旋化期间,CC的总面积增加了5个数量级。到出生后第32周,总CC面积仅达到平均成年面积的51%。在整个发展过程中,CC细分区域呈现不均匀的面积增加。脾在出生后第32周成熟程度最高,达到成人平均水平的55%。膝和前中体的细分在出生后32周成熟程度最低,分别为平均成年面积的50%和49%。因此,狒狒的CC在出生后持续增长。狒狒CC发育过程中这些与年龄相关的变化与人类的发育过程一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tracking development of the corpus callosum in fetal and early postnatal baboons using magnetic resonance imaging.

Tracking development of the corpus callosum in fetal and early postnatal baboons using magnetic resonance imaging.

Tracking development of the corpus callosum in fetal and early postnatal baboons using magnetic resonance imaging.

Tracking development of the corpus callosum in fetal and early postnatal baboons using magnetic resonance imaging.

Although the maturation of the corpus callosum (CC) can serve as a sensitive marker for normative antenatal and postnatal brain development, little is known about its development across this critical period. While high-resolution magnetic resonance imaging can provide an opportunity to examine normative brain development in humans, concerns remain over the exposure of developing fetuses to non-essential imaging. Nonhuman primates can provide a valuable model for normative brain maturation. Baboons share several important developmental characteristics with humans, including a highly orchestrated pattern of cerebral development. Developmental changes in total CC area and its subdivisions were examined across the antenatal (weeks 17 - 26 of 28 weeks total gestation) and early postnatal (to week 32) period in baboons (Papio hamadryas anubis). Thirteen fetal and sixteen infant baboons were studied using high-resolution MRI. During the period of primary gyrification, the total area of the CC increased by a magnitude of five. By postnatal week 32, the total CC area attained only 51% of the average adult area. CC subdivisions showed non-uniform increases in area, throughout development. The splenium showed the most maturation by postnatal week 32, attaining 55% of the average adult value. The subdivisions of the genu and anterior midbody showed the least maturation by postnatal week 32, attaining 50% and 49% of the average adult area. Thus, the CC of baboons shows continued growth past the postnatal period. These age-related changes in the developing baboon CC are consistent with the developmental course in humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Neuroimaging Journal
Open Neuroimaging Journal Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
0.70
自引率
0.00%
发文量
3
期刊介绍: The Open Neuroimaging Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, and letters in all important areas of brain function, structure and organization including neuroimaging, neuroradiology, analysis methods, functional MRI acquisition and physics, brain mapping, macroscopic level of brain organization, computational modeling and analysis, structure-function and brain-behavior relationships, anatomy and physiology, psychiatric diseases and disorders of the nervous system, use of imaging to the understanding of brain pathology and brain abnormalities, cognition and aging, social neuroscience, sensorimotor processing, communication and learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信