{"title":"锂电池用可调控离子传输的MOF颗粒(UiO-66和UiO-66(Ce))/纤维素纳米复合材料隔膜","authors":"Jiajin Zhang , Zixuan Zhang , Tong Wu , Xiaogang Luo","doi":"10.1016/j.jelechem.2023.117708","DOIUrl":null,"url":null,"abstract":"<div><p>Commercial separators result in poor lithium battery performance due to low electrolyte wettability and non-selective ion transport. In this work, the cellulose membrane with excellent electrolyte wettability was selected as the skeleton, and the MOF nanoparticles were added by the blending method. The composite cellulose membrane with uniform pore size was prepared by casting process. The cellulose membrane skeleton promoted the absorption of electrolytes. The Lewis acid sites presented in UiO-66 facilitated the dissociation of lithium salts by attracting PF<sub>6</sub><sup>−</sup> anions. The OMS (open metal site) provided by UiO-66(Ce) further adsorbs anions and solvent molecules, effectively regulated ion transport, maintained a stable and efficient cycle life, and reduced lithium dendrite deposition. The LiFePO<sub>4</sub>/Li equipped with UiO-66/CM showed a capacity retention rate of 71.70%, while the LiFePO<sub>4</sub>/Li equipped with UiO-66 (Ce)/CM showed a capacity retention rate of 93.80 % after 200 cycles at 0.5C. Therefore, the developed strategy may provide a powerful way to improve electrolyte wettability and effectively regulate ion transport.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117708"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF particles (UiO-66 and UiO-66(Ce))/cellulose nanocomposite separators with regulating ion transport controllably for lithium battery\",\"authors\":\"Jiajin Zhang , Zixuan Zhang , Tong Wu , Xiaogang Luo\",\"doi\":\"10.1016/j.jelechem.2023.117708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Commercial separators result in poor lithium battery performance due to low electrolyte wettability and non-selective ion transport. In this work, the cellulose membrane with excellent electrolyte wettability was selected as the skeleton, and the MOF nanoparticles were added by the blending method. The composite cellulose membrane with uniform pore size was prepared by casting process. The cellulose membrane skeleton promoted the absorption of electrolytes. The Lewis acid sites presented in UiO-66 facilitated the dissociation of lithium salts by attracting PF<sub>6</sub><sup>−</sup> anions. The OMS (open metal site) provided by UiO-66(Ce) further adsorbs anions and solvent molecules, effectively regulated ion transport, maintained a stable and efficient cycle life, and reduced lithium dendrite deposition. The LiFePO<sub>4</sub>/Li equipped with UiO-66/CM showed a capacity retention rate of 71.70%, while the LiFePO<sub>4</sub>/Li equipped with UiO-66 (Ce)/CM showed a capacity retention rate of 93.80 % after 200 cycles at 0.5C. Therefore, the developed strategy may provide a powerful way to improve electrolyte wettability and effectively regulate ion transport.</p></div>\",\"PeriodicalId\":50545,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"946 \",\"pages\":\"Article 117708\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665723005684\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005684","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
摘要
商用隔膜由于低电解质润湿性和非选择性离子传输导致锂电池性能差。本研究选择具有优异电解质润湿性的纤维素膜作为骨架,采用共混法添加MOF纳米颗粒。采用铸造法制备了孔径均匀的复合纤维素膜。纤维素膜骨架促进了电解质的吸收。UiO-66中存在的Lewis酸位点通过吸引PF6−阴离子促进锂盐的解离。UiO-66(Ce)提供的OMS (open metal site)进一步吸附阴离子和溶剂分子,有效调节离子运输,保持稳定高效的循环寿命,减少锂枝晶沉积。在0.5℃下循环200次后,UiO-66 (Ce)/CM掺杂的LiFePO4/Li的容量保持率为71.70%,而UiO-66 (Ce)/CM掺杂的LiFePO4/Li的容量保持率为93.80%。因此,所开发的策略可能为改善电解质润湿性和有效调节离子传输提供了有力的途径。
MOF particles (UiO-66 and UiO-66(Ce))/cellulose nanocomposite separators with regulating ion transport controllably for lithium battery
Commercial separators result in poor lithium battery performance due to low electrolyte wettability and non-selective ion transport. In this work, the cellulose membrane with excellent electrolyte wettability was selected as the skeleton, and the MOF nanoparticles were added by the blending method. The composite cellulose membrane with uniform pore size was prepared by casting process. The cellulose membrane skeleton promoted the absorption of electrolytes. The Lewis acid sites presented in UiO-66 facilitated the dissociation of lithium salts by attracting PF6− anions. The OMS (open metal site) provided by UiO-66(Ce) further adsorbs anions and solvent molecules, effectively regulated ion transport, maintained a stable and efficient cycle life, and reduced lithium dendrite deposition. The LiFePO4/Li equipped with UiO-66/CM showed a capacity retention rate of 71.70%, while the LiFePO4/Li equipped with UiO-66 (Ce)/CM showed a capacity retention rate of 93.80 % after 200 cycles at 0.5C. Therefore, the developed strategy may provide a powerful way to improve electrolyte wettability and effectively regulate ion transport.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.