金属原子对键上的电荷转移及金属间化合物所采用的晶体结构。

IF 1.8 4区 材料科学
Acta Crystallographica Section A Pub Date : 2012-01-01 Epub Date: 2011-11-30 DOI:10.1107/S0108767311044151
T Rajasekharan, V Seshubai
{"title":"金属原子对键上的电荷转移及金属间化合物所采用的晶体结构。","authors":"T Rajasekharan,&nbsp;V Seshubai","doi":"10.1107/S0108767311044151","DOIUrl":null,"url":null,"abstract":"<p><p>It has been argued in our recent papers that the heat of formation of intermetallic compounds is mostly concentrated in the nearest neighbor unlike atom-pair bonds, and that the positive term in Miedema's equation is associated with charge transfer on the bond to maintain electroneutrality. In this paper, taking examples of some well populated crystal-structure types such as MgCu(2), AsNa(3), AuCu(3), MoSi(2) and SiCr(3) types, the effect of such charge transfer on the crystal structures adopted by intermetallic compounds is examined. It is shown that the correlation between the observed size changes of atoms on alloying and their electronegativity differences is supportive of the idea of charge transfer between atoms. It is argued that the electronegativity and valence differences need to be of the required magnitude and direction to alter, through charge transfer, the elemental radius ratios R(A)/R(B) to the internal radius ratios r(A)/r(B) allowed by the structure types. Since the size change of atoms on alloying is highly correlated to how different R(A)/R(B) is from the ideal radius ratio for a structure type, the lattice parameters of intermetallic compounds can be predicted with excellent accuracy knowing R(A)/R(B). A practical application of the approach developed in our recent papers to superalloy design is presented.</p>","PeriodicalId":7400,"journal":{"name":"Acta Crystallographica Section A","volume":"68 Pt 1","pages":"156-65"},"PeriodicalIF":1.8000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108767311044151","citationCount":"17","resultStr":"{\"title\":\"Charge transfer on the metallic atom-pair bond, and the crystal structures adopted by intermetallic compounds.\",\"authors\":\"T Rajasekharan,&nbsp;V Seshubai\",\"doi\":\"10.1107/S0108767311044151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been argued in our recent papers that the heat of formation of intermetallic compounds is mostly concentrated in the nearest neighbor unlike atom-pair bonds, and that the positive term in Miedema's equation is associated with charge transfer on the bond to maintain electroneutrality. In this paper, taking examples of some well populated crystal-structure types such as MgCu(2), AsNa(3), AuCu(3), MoSi(2) and SiCr(3) types, the effect of such charge transfer on the crystal structures adopted by intermetallic compounds is examined. It is shown that the correlation between the observed size changes of atoms on alloying and their electronegativity differences is supportive of the idea of charge transfer between atoms. It is argued that the electronegativity and valence differences need to be of the required magnitude and direction to alter, through charge transfer, the elemental radius ratios R(A)/R(B) to the internal radius ratios r(A)/r(B) allowed by the structure types. Since the size change of atoms on alloying is highly correlated to how different R(A)/R(B) is from the ideal radius ratio for a structure type, the lattice parameters of intermetallic compounds can be predicted with excellent accuracy knowing R(A)/R(B). A practical application of the approach developed in our recent papers to superalloy design is presented.</p>\",\"PeriodicalId\":7400,\"journal\":{\"name\":\"Acta Crystallographica Section A\",\"volume\":\"68 Pt 1\",\"pages\":\"156-65\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S0108767311044151\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108767311044151\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S0108767311044151","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在我们最近的论文中,我们认为金属间化合物的形成热主要集中在最近的邻居上,而不像原子对键,并且Miedema方程中的正项与键上的电荷转移有关,以保持电子中性。本文以MgCu(2)、AsNa(3)、AuCu(3)、MoSi(2)、SiCr(3)等晶体结构类型为例,考察了这种电荷转移对金属间化合物晶体结构的影响。结果表明,观察到的合金原子尺寸变化与其电负性差异之间的相关性支持了原子间电荷转移的观点。我们认为,电负性和价差需要达到所要求的大小和方向,才能通过电荷转移改变元素半径比R(A)/R(B)到结构类型所允许的内部半径比R(A)/R(B)。由于合金中原子的尺寸变化与R(A)/R(B)与结构类型的理想半径比的差异高度相关,因此只要知道R(A)/R(B),就可以非常准确地预测金属间化合物的晶格参数。介绍了我们最近论文中开发的方法在高温合金设计中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Charge transfer on the metallic atom-pair bond, and the crystal structures adopted by intermetallic compounds.

It has been argued in our recent papers that the heat of formation of intermetallic compounds is mostly concentrated in the nearest neighbor unlike atom-pair bonds, and that the positive term in Miedema's equation is associated with charge transfer on the bond to maintain electroneutrality. In this paper, taking examples of some well populated crystal-structure types such as MgCu(2), AsNa(3), AuCu(3), MoSi(2) and SiCr(3) types, the effect of such charge transfer on the crystal structures adopted by intermetallic compounds is examined. It is shown that the correlation between the observed size changes of atoms on alloying and their electronegativity differences is supportive of the idea of charge transfer between atoms. It is argued that the electronegativity and valence differences need to be of the required magnitude and direction to alter, through charge transfer, the elemental radius ratios R(A)/R(B) to the internal radius ratios r(A)/r(B) allowed by the structure types. Since the size change of atoms on alloying is highly correlated to how different R(A)/R(B) is from the ideal radius ratio for a structure type, the lattice parameters of intermetallic compounds can be predicted with excellent accuracy knowing R(A)/R(B). A practical application of the approach developed in our recent papers to superalloy design is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
0
审稿时长
3 months
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信