结合文本和视觉信息的医学领域图像检索。

The open medical informatics journal Pub Date : 2011-01-01 Epub Date: 2011-07-27 DOI:10.2174/1874431101105010050
Yiannis Gkoufas, Anna Morou, Theodore Kalamboukis
{"title":"结合文本和视觉信息的医学领域图像检索。","authors":"Yiannis Gkoufas,&nbsp;Anna Morou,&nbsp;Theodore Kalamboukis","doi":"10.2174/1874431101105010050","DOIUrl":null,"url":null,"abstract":"<p><p>In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP).</p>","PeriodicalId":88331,"journal":{"name":"The open medical informatics journal","volume":"5 ","pages":"50-7"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4a/e8/TOMINFOJ-5-50.PMC3178904.pdf","citationCount":"12","resultStr":"{\"title\":\"Combining textual and visual information for image retrieval in the medical domain.\",\"authors\":\"Yiannis Gkoufas,&nbsp;Anna Morou,&nbsp;Theodore Kalamboukis\",\"doi\":\"10.2174/1874431101105010050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP).</p>\",\"PeriodicalId\":88331,\"journal\":{\"name\":\"The open medical informatics journal\",\"volume\":\"5 \",\"pages\":\"50-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4a/e8/TOMINFOJ-5-50.PMC3178904.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The open medical informatics journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874431101105010050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/7/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open medical informatics journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874431101105010050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/7/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们汇集了过去两年中参与imageCLEF评估任务所获得的经验。通过结合图像的视觉和文本来源,尝试利用线性组合进行图像检索。从我们的实验中我们得出结论,混合检索技术以可互换的重复方式应用文本检索和视觉检索,提高了性能,同时克服了视觉检索的可伸缩性限制。特别是,当对基于自然语言处理(NLP)的文本检索的前1000个结果进行基于内容的图像检索(CBIR)时,2009年和2010年数据的平均精度(MAP)分别从0.01提高到0.15和0.087。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combining textual and visual information for image retrieval in the medical domain.

Combining textual and visual information for image retrieval in the medical domain.

In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信