一类MIMO非线性离散系统的数据驱动无模型自适应控制。

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-11-30 DOI:10.1109/TNN.2011.2176141
Zhongsheng Hou, Shangtai Jin
{"title":"一类MIMO非线性离散系统的数据驱动无模型自适应控制。","authors":"Zhongsheng Hou,&nbsp;Shangtai Jin","doi":"10.1109/TNN.2011.2176141","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2173-88"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2176141","citationCount":"445","resultStr":"{\"title\":\"Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems.\",\"authors\":\"Zhongsheng Hou,&nbsp;Shangtai Jin\",\"doi\":\"10.1109/TNN.2011.2176141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"2173-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2176141\",\"citationCount\":\"445\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2176141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2176141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 445

摘要

针对一类一般多输入多输出非线性离散系统,提出了一种基于动态线性化技术(DLT)的数据驱动无模型自适应控制(MFAC)方法。DLT包括紧凑形式动态线性化、部分形式动态线性化和完整形式动态线性化。该方法的主要特点是控制器设计仅依赖于被控对象的测量输入/输出数据。分析和大量仿真结果表明,MFAC保证了有界输入有界输出的稳定性和跟踪误差的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems.

In this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信