基于数据的非线性系统分段仿射逼近辨识与控制。

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-11-30 DOI:10.1109/TNN.2011.2175946
Chow Yin Lai, Cheng Xiang, Tong Heng Lee
{"title":"基于数据的非线性系统分段仿射逼近辨识与控制。","authors":"Chow Yin Lai,&nbsp;Cheng Xiang,&nbsp;Tong Heng Lee","doi":"10.1109/TNN.2011.2175946","DOIUrl":null,"url":null,"abstract":"<p><p>The piecewise affine (PWA) model represents an attractive model structure for approximating nonlinear systems. In this paper, a procedure for obtaining the PWA autoregressive exogenous (ARX) (autoregressive systems with exogenous inputs) models of nonlinear systems is proposed. Two key parameters defining a PWARX model, namely, the parameters of locally affine subsystems and the partition of the regressor space, are estimated, the former through a least-squares-based identification method using multiple models, and the latter using standard procedures such as neural network classifier or support vector machine classifier. Having obtained the PWARX model of the nonlinear system, a controller is then derived to control the system for reference tracking. Both simulation and experimental studies show that the proposed algorithm can indeed provide accurate PWA approximation of nonlinear systems, and the designed controller provides good tracking performance.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2189-200"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2175946","citationCount":"23","resultStr":"{\"title\":\"Data-based identification and control of nonlinear systems via piecewise affine approximation.\",\"authors\":\"Chow Yin Lai,&nbsp;Cheng Xiang,&nbsp;Tong Heng Lee\",\"doi\":\"10.1109/TNN.2011.2175946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The piecewise affine (PWA) model represents an attractive model structure for approximating nonlinear systems. In this paper, a procedure for obtaining the PWA autoregressive exogenous (ARX) (autoregressive systems with exogenous inputs) models of nonlinear systems is proposed. Two key parameters defining a PWARX model, namely, the parameters of locally affine subsystems and the partition of the regressor space, are estimated, the former through a least-squares-based identification method using multiple models, and the latter using standard procedures such as neural network classifier or support vector machine classifier. Having obtained the PWARX model of the nonlinear system, a controller is then derived to control the system for reference tracking. Both simulation and experimental studies show that the proposed algorithm can indeed provide accurate PWA approximation of nonlinear systems, and the designed controller provides good tracking performance.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"2189-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2175946\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2175946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2175946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

分段仿射(PWA)模型是一种有吸引力的模型结构,用于逼近非线性系统。本文提出了一种获取非线性系统的PWA自回归外生(ARX)模型的方法。定义PWARX模型的两个关键参数,即局部仿射子系统的参数和回归量空间的划分,前者通过使用多模型的基于最小二乘的识别方法进行估计,后者使用神经网络分类器或支持向量机分类器等标准程序进行估计。在得到非线性系统的PWARX模型后,推导出控制器对系统进行参考跟踪控制。仿真和实验研究均表明,该算法确实能够对非线性系统提供精确的PWA逼近,所设计的控制器具有良好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-based identification and control of nonlinear systems via piecewise affine approximation.

The piecewise affine (PWA) model represents an attractive model structure for approximating nonlinear systems. In this paper, a procedure for obtaining the PWA autoregressive exogenous (ARX) (autoregressive systems with exogenous inputs) models of nonlinear systems is proposed. Two key parameters defining a PWARX model, namely, the parameters of locally affine subsystems and the partition of the regressor space, are estimated, the former through a least-squares-based identification method using multiple models, and the latter using standard procedures such as neural network classifier or support vector machine classifier. Having obtained the PWARX model of the nonlinear system, a controller is then derived to control the system for reference tracking. Both simulation and experimental studies show that the proposed algorithm can indeed provide accurate PWA approximation of nonlinear systems, and the designed controller provides good tracking performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信