{"title":"多变量动态过程的质量相关数据驱动建模和监测:动态T-PLS方法。","authors":"Gang Li, Baosheng Liu, S Joe Qin, Donghua Zhou","doi":"10.1109/TNN.2011.2165853","DOIUrl":null,"url":null,"abstract":"<p><p>In data-based monitoring field, the nonlinear iterative partial least squares procedure has been a useful tool for process data modeling, which is also the foundation of projection to latent structures (PLS) models. To describe the dynamic processes properly, a dynamic PLS algorithm is proposed in this paper for dynamic process modeling, which captures the dynamic correlation between the measurement block and quality data block. For the purpose of process monitoring, a dynamic total PLS (T-PLS) model is presented to decompose the measurement block into four subspaces. The new model is the dynamic extension of the T-PLS model, which is efficient for detecting quality-related abnormal situation. Several examples are given to show the effectiveness of dynamic T-PLS models and the corresponding fault detection methods.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2262-71"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2165853","citationCount":"97","resultStr":"{\"title\":\"Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: the dynamic T-PLS approach.\",\"authors\":\"Gang Li, Baosheng Liu, S Joe Qin, Donghua Zhou\",\"doi\":\"10.1109/TNN.2011.2165853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In data-based monitoring field, the nonlinear iterative partial least squares procedure has been a useful tool for process data modeling, which is also the foundation of projection to latent structures (PLS) models. To describe the dynamic processes properly, a dynamic PLS algorithm is proposed in this paper for dynamic process modeling, which captures the dynamic correlation between the measurement block and quality data block. For the purpose of process monitoring, a dynamic total PLS (T-PLS) model is presented to decompose the measurement block into four subspaces. The new model is the dynamic extension of the T-PLS model, which is efficient for detecting quality-related abnormal situation. Several examples are given to show the effectiveness of dynamic T-PLS models and the corresponding fault detection methods.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"2262-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2165853\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2165853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2165853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: the dynamic T-PLS approach.
In data-based monitoring field, the nonlinear iterative partial least squares procedure has been a useful tool for process data modeling, which is also the foundation of projection to latent structures (PLS) models. To describe the dynamic processes properly, a dynamic PLS algorithm is proposed in this paper for dynamic process modeling, which captures the dynamic correlation between the measurement block and quality data block. For the purpose of process monitoring, a dynamic total PLS (T-PLS) model is presented to decompose the measurement block into four subspaces. The new model is the dynamic extension of the T-PLS model, which is efficient for detecting quality-related abnormal situation. Several examples are given to show the effectiveness of dynamic T-PLS models and the corresponding fault detection methods.