平衡微阵列中差异表达基因选择中的错误发现和假阴性率。

Byung S Park, Motomi Mori
{"title":"平衡微阵列中差异表达基因选择中的错误发现和假阴性率。","authors":"Byung S Park, Motomi Mori","doi":"10.2147/OAB.S7181","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide mRNA expression profiling using microarrays is widely available today, yet analysis and interpretation of the resulting high dimensional data continue to be a challenge for biomedical scientists. In a typical microarray experiment, the number of biological samples is quite modest compared with the number of genes on a microarray, and a probability of falsely declaring differential expression is unacceptably high without any adjustment for multiple comparisons. However, a stringent multiple comparison procedure can lead to an unacceptably high false negative rate, potentially missing a large fraction of truly differentially expressed genes. In this paper we propose a new \"balancing factor score\" (BFS) method for identifying a set of differentially expressed genes. The BFS method combines a traditional P value criterion with any other informative factors (referred to as balancing factors) that may help to identify differentially expressed genes. We evaluate the performance of the BFS method when the observed fold change is used as a balancing factor in a simulation study and show that the BFS method can substantially reduce the false negative rate while maintaining a reasonable false discovery rate.</p>","PeriodicalId":89207,"journal":{"name":"Open access bioinformatics","volume":"2010 2","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197253/pdf/nihms-327719.pdf","citationCount":"0","resultStr":"{\"title\":\"Balancing false discovery and false negative rates in selection of differentially expressed genes in microarrays.\",\"authors\":\"Byung S Park, Motomi Mori\",\"doi\":\"10.2147/OAB.S7181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide mRNA expression profiling using microarrays is widely available today, yet analysis and interpretation of the resulting high dimensional data continue to be a challenge for biomedical scientists. In a typical microarray experiment, the number of biological samples is quite modest compared with the number of genes on a microarray, and a probability of falsely declaring differential expression is unacceptably high without any adjustment for multiple comparisons. However, a stringent multiple comparison procedure can lead to an unacceptably high false negative rate, potentially missing a large fraction of truly differentially expressed genes. In this paper we propose a new \\\"balancing factor score\\\" (BFS) method for identifying a set of differentially expressed genes. The BFS method combines a traditional P value criterion with any other informative factors (referred to as balancing factors) that may help to identify differentially expressed genes. We evaluate the performance of the BFS method when the observed fold change is used as a balancing factor in a simulation study and show that the BFS method can substantially reduce the false negative rate while maintaining a reasonable false discovery rate.</p>\",\"PeriodicalId\":89207,\"journal\":{\"name\":\"Open access bioinformatics\",\"volume\":\"2010 2\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197253/pdf/nihms-327719.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open access bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/OAB.S7181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open access bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/OAB.S7181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,使用微阵列进行全基因组mRNA表达谱分析已经广泛应用,但对由此产生的高维数据的分析和解释仍然是生物医学科学家面临的一个挑战。在一个典型的微阵列实验中,与微阵列上的基因数量相比,生物样本的数量是相当有限的,如果不进行多次比较的调整,错误地声明差异表达的可能性是不可接受的。然而,严格的多重比较程序可能导致假阴性率高得令人无法接受,潜在地遗漏了很大一部分真正的差异表达基因。在本文中,我们提出了一种新的“平衡因子评分”(BFS)方法来识别一组差异表达基因。BFS方法将传统的P值标准与任何其他可能有助于识别差异表达基因的信息因子(称为平衡因子)相结合。在仿真研究中,以观察到的折叠变化作为平衡因素,对BFS方法的性能进行了评估,结果表明,BFS方法可以在保持合理的错误发现率的同时大幅降低假阴性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Balancing false discovery and false negative rates in selection of differentially expressed genes in microarrays.

Balancing false discovery and false negative rates in selection of differentially expressed genes in microarrays.

Balancing false discovery and false negative rates in selection of differentially expressed genes in microarrays.

Genome-wide mRNA expression profiling using microarrays is widely available today, yet analysis and interpretation of the resulting high dimensional data continue to be a challenge for biomedical scientists. In a typical microarray experiment, the number of biological samples is quite modest compared with the number of genes on a microarray, and a probability of falsely declaring differential expression is unacceptably high without any adjustment for multiple comparisons. However, a stringent multiple comparison procedure can lead to an unacceptably high false negative rate, potentially missing a large fraction of truly differentially expressed genes. In this paper we propose a new "balancing factor score" (BFS) method for identifying a set of differentially expressed genes. The BFS method combines a traditional P value criterion with any other informative factors (referred to as balancing factors) that may help to identify differentially expressed genes. We evaluate the performance of the BFS method when the observed fold change is used as a balancing factor in a simulation study and show that the BFS method can substantially reduce the false negative rate while maintaining a reasonable false discovery rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信