有序分类的相关基因表达数据分析

Shyamal D Peddada, Shawn F Harris, Ori Davidov
{"title":"有序分类的相关基因表达数据分析","authors":"Shyamal D Peddada, Shawn F Harris, Ori Davidov","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A bootstrap based methodology is introduced for analyzing repeated measures/longitudinal microarray gene expression data over ordered categories. The proposed non-parametric procedure uses order-restricted inference to compare gene expressions among ordered experimental conditions. The null distribution for determining significance is derived by suitably bootstrapping the residuals. The procedure addresses two potential sources of correlation in the data, namely, (a) correlations among genes within a chip (\"intra-chip\" correlation), and (b) correlation within subject due to repeated/longitudinal measurements (\"temporal\" correlation). To make the procedure computationally efficient, the adaptive bootstrap methodology of Guo and Peddada (2008) is implemented such that the resulting procedure controls the false discovery rate (FDR) at the desired nominal level.</p>","PeriodicalId":89431,"journal":{"name":"Journal of the Indian Society of Agricultural Statistics. Indian Society of Agricultural Statistics","volume":"64 1","pages":"45-60"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190572/pdf/nihms250300.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of Correlated Gene Expression Data on Ordered Categories.\",\"authors\":\"Shyamal D Peddada, Shawn F Harris, Ori Davidov\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A bootstrap based methodology is introduced for analyzing repeated measures/longitudinal microarray gene expression data over ordered categories. The proposed non-parametric procedure uses order-restricted inference to compare gene expressions among ordered experimental conditions. The null distribution for determining significance is derived by suitably bootstrapping the residuals. The procedure addresses two potential sources of correlation in the data, namely, (a) correlations among genes within a chip (\\\"intra-chip\\\" correlation), and (b) correlation within subject due to repeated/longitudinal measurements (\\\"temporal\\\" correlation). To make the procedure computationally efficient, the adaptive bootstrap methodology of Guo and Peddada (2008) is implemented such that the resulting procedure controls the false discovery rate (FDR) at the desired nominal level.</p>\",\"PeriodicalId\":89431,\"journal\":{\"name\":\"Journal of the Indian Society of Agricultural Statistics. Indian Society of Agricultural Statistics\",\"volume\":\"64 1\",\"pages\":\"45-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190572/pdf/nihms250300.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Society of Agricultural Statistics. Indian Society of Agricultural Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Agricultural Statistics. Indian Society of Agricultural Statistics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于引导的方法,用于分析有序类别的重复测量/纵向微阵列基因表达数据。所提出的非参数程序使用阶次限制推论来比较有序实验条件下的基因表达。通过对残差进行适当的引导,可以得出用于确定显著性的空分布。该程序解决了数据中两个潜在的相关性来源,即(a)芯片内基因之间的相关性("芯片内 "相关性),以及(b)重复/纵向测量导致的受试者内部相关性("时间 "相关性)。为了提高计算效率,采用了 Guo 和 Peddada(2008 年)的自适应引导方法,从而将错误发现率(FDR)控制在所需的名义水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Correlated Gene Expression Data on Ordered Categories.

Analysis of Correlated Gene Expression Data on Ordered Categories.

Analysis of Correlated Gene Expression Data on Ordered Categories.

Analysis of Correlated Gene Expression Data on Ordered Categories.

A bootstrap based methodology is introduced for analyzing repeated measures/longitudinal microarray gene expression data over ordered categories. The proposed non-parametric procedure uses order-restricted inference to compare gene expressions among ordered experimental conditions. The null distribution for determining significance is derived by suitably bootstrapping the residuals. The procedure addresses two potential sources of correlation in the data, namely, (a) correlations among genes within a chip ("intra-chip" correlation), and (b) correlation within subject due to repeated/longitudinal measurements ("temporal" correlation). To make the procedure computationally efficient, the adaptive bootstrap methodology of Guo and Peddada (2008) is implemented such that the resulting procedure controls the false discovery rate (FDR) at the desired nominal level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信