由自组织映射解释的自回归过程。应用于工业过程异常行为的检测。

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-10-10 DOI:10.1109/TNN.2011.2169810
Chiara Brighenti, Miguel Á Sanz-Bobi
{"title":"由自组织映射解释的自回归过程。应用于工业过程异常行为的检测。","authors":"Chiara Brighenti,&nbsp;Miguel Á Sanz-Bobi","doi":"10.1109/TNN.2011.2169810","DOIUrl":null,"url":null,"abstract":"<p><p>This paper analyzes the expected time evolution of an auto-regressive (AR) process using self-organized maps (SOM). It investigates how a SOM captures the time information given by the AR input process and how the transitions from one neuron to another one can be understood under a probabilistic perspective. In particular, regions of the map into which the AR process is expected to move are identified. This characterization allows detecting anomalous changes in the AR process structure or parameters. On the basis of the theoretical results, an anomaly detection method is proposed and applied to a real industrial process.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2078-90"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2169810","citationCount":"22","resultStr":"{\"title\":\"Auto-regressive processes explained by self-organized maps. Application to the detection of abnormal behavior in industrial processes.\",\"authors\":\"Chiara Brighenti,&nbsp;Miguel Á Sanz-Bobi\",\"doi\":\"10.1109/TNN.2011.2169810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper analyzes the expected time evolution of an auto-regressive (AR) process using self-organized maps (SOM). It investigates how a SOM captures the time information given by the AR input process and how the transitions from one neuron to another one can be understood under a probabilistic perspective. In particular, regions of the map into which the AR process is expected to move are identified. This characterization allows detecting anomalous changes in the AR process structure or parameters. On the basis of the theoretical results, an anomaly detection method is proposed and applied to a real industrial process.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"2078-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2169810\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2169810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2169810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文利用自组织映射(SOM)分析了自回归过程的期望时间演化。它研究了SOM如何捕获AR输入过程给出的时间信息,以及如何在概率角度下理解从一个神经元到另一个神经元的转换。特别是,地图上的AR过程预计会移动到的区域被确定。这种特性允许检测AR工艺结构或参数中的异常变化。在此基础上,提出了一种异常检测方法,并将其应用于实际工业过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-regressive processes explained by self-organized maps. Application to the detection of abnormal behavior in industrial processes.

This paper analyzes the expected time evolution of an auto-regressive (AR) process using self-organized maps (SOM). It investigates how a SOM captures the time information given by the AR input process and how the transitions from one neuron to another one can be understood under a probabilistic perspective. In particular, regions of the map into which the AR process is expected to move are identified. This characterization allows detecting anomalous changes in the AR process structure or parameters. On the basis of the theoretical results, an anomaly detection method is proposed and applied to a real industrial process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信