基于黎曼梯度的复矩阵超球学习。

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-10-06 DOI:10.1109/TNN.2011.2168537
Simone Fiori
{"title":"基于黎曼梯度的复矩阵超球学习。","authors":"Simone Fiori","doi":"10.1109/TNN.2011.2168537","DOIUrl":null,"url":null,"abstract":"<p><p>This brief tackles the problem of learning over the complex-valued matrix-hypersphere S(α)(n,p)(C). The developed learning theory is formulated in terms of Riemannian-gradient-based optimization of a regular criterion function and is implemented by a geodesic-stepping method. The stepping method is equipped with a geodesic-search sub-algorithm to compute the optimal learning stepsize at any step. Numerical results show the effectiveness of the developed learning method and of its implementation.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2132-8"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2168537","citationCount":"4","resultStr":"{\"title\":\"Riemannian-gradient-based learning on the complex matrix-hypersphere.\",\"authors\":\"Simone Fiori\",\"doi\":\"10.1109/TNN.2011.2168537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This brief tackles the problem of learning over the complex-valued matrix-hypersphere S(α)(n,p)(C). The developed learning theory is formulated in terms of Riemannian-gradient-based optimization of a regular criterion function and is implemented by a geodesic-stepping method. The stepping method is equipped with a geodesic-search sub-algorithm to compute the optimal learning stepsize at any step. Numerical results show the effectiveness of the developed learning method and of its implementation.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"2132-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2168537\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2168537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2168537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了复值矩阵-超球S(α)(n,p)(C)上的学习问题。所开发的学习理论是基于正则准则函数的黎曼梯度优化,并通过测地步进方法实现。该方法采用测地搜索子算法来计算每一步的最优学习步长。数值结果表明了所提出的学习方法及其实现的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemannian-gradient-based learning on the complex matrix-hypersphere.

This brief tackles the problem of learning over the complex-valued matrix-hypersphere S(α)(n,p)(C). The developed learning theory is formulated in terms of Riemannian-gradient-based optimization of a regular criterion function and is implemented by a geodesic-stepping method. The stepping method is equipped with a geodesic-search sub-algorithm to compute the optimal learning stepsize at any step. Numerical results show the effectiveness of the developed learning method and of its implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信