生物医学信号分离的节能FastICA实现。

IEEE transactions on neural networks Pub Date : 2011-11-01 Epub Date: 2011-10-03 DOI:10.1109/TNN.2011.2166979
Lan-Da Van, Di-You Wu, Chien-Shiun Chen
{"title":"生物医学信号分离的节能FastICA实现。","authors":"Lan-Da Van,&nbsp;Di-You Wu,&nbsp;Chien-Shiun Chen","doi":"10.1109/TNN.2011.2166979","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an energy-efficient fast independent component analysis (FastICA) implementation with an early determination scheme for eight-channel electroencephalogram (EEG) signal separation. The main contributions are as follows: (1) energy-efficient FastICA using the proposed early determination scheme and the corresponding architecture; (2) cost-effective FastICA using the proposed preprocessing unit architecture with one coordinate rotation digital computer-based eigenvalue decomposition processor and the proposed one-unit architecture with the hardware reuse scheme; and (3) low-computation-time FastICA using the four parallel one-units architecture. The resulting power dissipation of the FastICA implementation for eight-channel EEG signal separation is 16.35 mW at 100 MHz at 1.0 V. Compared with the design without early determination, the proposed FastICA architecture implemented in united microelectronics corporation 90 nm 1P9M complementary metal-oxide-semiconductor process with a core area of 1.221 × 1.218 mm2 can achieve average energy reduction by 47.63%. From the post-layout simulation results, the maximum computation time is 0.29 s.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 11","pages":"1809-22"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2166979","citationCount":"60","resultStr":"{\"title\":\"Energy-efficient FastICA implementation for biomedical signal separation.\",\"authors\":\"Lan-Da Van,&nbsp;Di-You Wu,&nbsp;Chien-Shiun Chen\",\"doi\":\"10.1109/TNN.2011.2166979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents an energy-efficient fast independent component analysis (FastICA) implementation with an early determination scheme for eight-channel electroencephalogram (EEG) signal separation. The main contributions are as follows: (1) energy-efficient FastICA using the proposed early determination scheme and the corresponding architecture; (2) cost-effective FastICA using the proposed preprocessing unit architecture with one coordinate rotation digital computer-based eigenvalue decomposition processor and the proposed one-unit architecture with the hardware reuse scheme; and (3) low-computation-time FastICA using the four parallel one-units architecture. The resulting power dissipation of the FastICA implementation for eight-channel EEG signal separation is 16.35 mW at 100 MHz at 1.0 V. Compared with the design without early determination, the proposed FastICA architecture implemented in united microelectronics corporation 90 nm 1P9M complementary metal-oxide-semiconductor process with a core area of 1.221 × 1.218 mm2 can achieve average energy reduction by 47.63%. From the post-layout simulation results, the maximum computation time is 0.29 s.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 11\",\"pages\":\"1809-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2166979\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2166979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2166979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

提出了一种高效、快速的独立分量分析(FastICA)实现方法,该方法具有八通道脑电图(EEG)信号分离的早期确定方案。主要贡献如下:(1)采用提出的早期确定方案和相应的体系结构的节能FastICA;(2)采用基于一个坐标旋转数字计算机特征值分解处理器的预处理单元体系结构和基于硬件复用方案的单单元体系结构的高性价比FastICA;(3)采用四并行单单元架构的低计算时间FastICA。FastICA实现的8通道脑电信号分离的功耗为16.35 mW,频率为100 MHz,电压为1.0 V。采用联合微电子公司90 nm 1P9M互补型金属氧化物半导体工艺,芯面积为1.221 × 1.218 mm2,与未进行前期设计相比,FastICA架构的平均能耗降低了47.63%。从布局后的仿真结果来看,最大计算时间为0.29 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient FastICA implementation for biomedical signal separation.

This paper presents an energy-efficient fast independent component analysis (FastICA) implementation with an early determination scheme for eight-channel electroencephalogram (EEG) signal separation. The main contributions are as follows: (1) energy-efficient FastICA using the proposed early determination scheme and the corresponding architecture; (2) cost-effective FastICA using the proposed preprocessing unit architecture with one coordinate rotation digital computer-based eigenvalue decomposition processor and the proposed one-unit architecture with the hardware reuse scheme; and (3) low-computation-time FastICA using the four parallel one-units architecture. The resulting power dissipation of the FastICA implementation for eight-channel EEG signal separation is 16.35 mW at 100 MHz at 1.0 V. Compared with the design without early determination, the proposed FastICA architecture implemented in united microelectronics corporation 90 nm 1P9M complementary metal-oxide-semiconductor process with a core area of 1.221 × 1.218 mm2 can achieve average energy reduction by 47.63%. From the post-layout simulation results, the maximum computation time is 0.29 s.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信