一类神经网络的稳定性与收敛性分析。

IEEE transactions on neural networks Pub Date : 2011-11-01 Epub Date: 2011-09-29 DOI:10.1109/TNN.2011.2167760
Xingbao Gao, Li-Zhi Liao
{"title":"一类神经网络的稳定性与收敛性分析。","authors":"Xingbao Gao,&nbsp;Li-Zhi Liao","doi":"10.1109/TNN.2011.2167760","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we analyze and establish the stability and convergence of the dynamical system proposed by Xia and Feng, whose equilibria solve variational inequality and related problems. Under the pseudo-monotonicity and other conditions, this system is proved to be stable in the sense of Lyapunov and converges to one of its equilibrium points for any starting point. Meanwhile, the global exponential stability of this system is also shown under some mild conditions without the strong monotonicity of the mapping. The obtained results improve and correct some existing ones. The validity and performance of this system are demonstrated by some numerical examples.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 11","pages":"1770-82"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2167760","citationCount":"2","resultStr":"{\"title\":\"Stability and convergence analysis for a class of neural networks.\",\"authors\":\"Xingbao Gao,&nbsp;Li-Zhi Liao\",\"doi\":\"10.1109/TNN.2011.2167760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we analyze and establish the stability and convergence of the dynamical system proposed by Xia and Feng, whose equilibria solve variational inequality and related problems. Under the pseudo-monotonicity and other conditions, this system is proved to be stable in the sense of Lyapunov and converges to one of its equilibrium points for any starting point. Meanwhile, the global exponential stability of this system is also shown under some mild conditions without the strong monotonicity of the mapping. The obtained results improve and correct some existing ones. The validity and performance of this system are demonstrated by some numerical examples.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 11\",\"pages\":\"1770-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2167760\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2167760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2167760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析并建立了Xia和Feng提出的求解变分不等式及相关问题的动力系统的稳定性和收敛性。在伪单调性等条件下,证明了该系统在Lyapunov意义上是稳定的,并对任意起始点收敛于其平衡点之一。同时,在不存在强单调性的条件下,也证明了该系统的全局指数稳定性。所得结果是对已有结果的改进和修正。通过数值算例验证了该系统的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and convergence analysis for a class of neural networks.

In this paper, we analyze and establish the stability and convergence of the dynamical system proposed by Xia and Feng, whose equilibria solve variational inequality and related problems. Under the pseudo-monotonicity and other conditions, this system is proved to be stable in the sense of Lyapunov and converges to one of its equilibrium points for any starting point. Meanwhile, the global exponential stability of this system is also shown under some mild conditions without the strong monotonicity of the mapping. The obtained results improve and correct some existing ones. The validity and performance of this system are demonstrated by some numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信