{"title":"一类Hopfield网络的极限界和正不变集的估计。","authors":"Jianxiong Zhang, Wansheng Tang, Pengsheng Zheng","doi":"10.1109/TNN.2011.2166275","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the ultimate bound and positively invariant set for a class of Hopfield neural networks (HNNs) based on the Lyapunov stability criterion and Lagrange multiplier method. It is shown that a hyperelliptic estimate of the ultimate bound and positively invariant set for the HNNs can be calculated by solving a linear matrix inequality (LMI). Furthermore, the global stability of the unique equilibrium and the instability region of the HNNs are analyzed, respectively. Finally, the most accurate estimate of the ultimate bound and positively invariant set can be derived by solving the corresponding optimization problems involving the LMI constraints. Some numerical examples are given to illustrate the effectiveness of the proposed results.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 11","pages":"1735-43"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2166275","citationCount":"1","resultStr":"{\"title\":\"Estimating the ultimate bound and positively invariant set for a class of Hopfield networks.\",\"authors\":\"Jianxiong Zhang, Wansheng Tang, Pengsheng Zheng\",\"doi\":\"10.1109/TNN.2011.2166275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we investigate the ultimate bound and positively invariant set for a class of Hopfield neural networks (HNNs) based on the Lyapunov stability criterion and Lagrange multiplier method. It is shown that a hyperelliptic estimate of the ultimate bound and positively invariant set for the HNNs can be calculated by solving a linear matrix inequality (LMI). Furthermore, the global stability of the unique equilibrium and the instability region of the HNNs are analyzed, respectively. Finally, the most accurate estimate of the ultimate bound and positively invariant set can be derived by solving the corresponding optimization problems involving the LMI constraints. Some numerical examples are given to illustrate the effectiveness of the proposed results.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 11\",\"pages\":\"1735-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2166275\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2166275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2166275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating the ultimate bound and positively invariant set for a class of Hopfield networks.
In this paper, we investigate the ultimate bound and positively invariant set for a class of Hopfield neural networks (HNNs) based on the Lyapunov stability criterion and Lagrange multiplier method. It is shown that a hyperelliptic estimate of the ultimate bound and positively invariant set for the HNNs can be calculated by solving a linear matrix inequality (LMI). Furthermore, the global stability of the unique equilibrium and the instability region of the HNNs are analyzed, respectively. Finally, the most accurate estimate of the ultimate bound and positively invariant set can be derived by solving the corresponding optimization problems involving the LMI constraints. Some numerical examples are given to illustrate the effectiveness of the proposed results.