一类Hopfield网络的极限界和正不变集的估计。

IEEE transactions on neural networks Pub Date : 2011-11-01 Epub Date: 2011-09-26 DOI:10.1109/TNN.2011.2166275
Jianxiong Zhang, Wansheng Tang, Pengsheng Zheng
{"title":"一类Hopfield网络的极限界和正不变集的估计。","authors":"Jianxiong Zhang,&nbsp;Wansheng Tang,&nbsp;Pengsheng Zheng","doi":"10.1109/TNN.2011.2166275","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the ultimate bound and positively invariant set for a class of Hopfield neural networks (HNNs) based on the Lyapunov stability criterion and Lagrange multiplier method. It is shown that a hyperelliptic estimate of the ultimate bound and positively invariant set for the HNNs can be calculated by solving a linear matrix inequality (LMI). Furthermore, the global stability of the unique equilibrium and the instability region of the HNNs are analyzed, respectively. Finally, the most accurate estimate of the ultimate bound and positively invariant set can be derived by solving the corresponding optimization problems involving the LMI constraints. Some numerical examples are given to illustrate the effectiveness of the proposed results.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 11","pages":"1735-43"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2166275","citationCount":"1","resultStr":"{\"title\":\"Estimating the ultimate bound and positively invariant set for a class of Hopfield networks.\",\"authors\":\"Jianxiong Zhang,&nbsp;Wansheng Tang,&nbsp;Pengsheng Zheng\",\"doi\":\"10.1109/TNN.2011.2166275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we investigate the ultimate bound and positively invariant set for a class of Hopfield neural networks (HNNs) based on the Lyapunov stability criterion and Lagrange multiplier method. It is shown that a hyperelliptic estimate of the ultimate bound and positively invariant set for the HNNs can be calculated by solving a linear matrix inequality (LMI). Furthermore, the global stability of the unique equilibrium and the instability region of the HNNs are analyzed, respectively. Finally, the most accurate estimate of the ultimate bound and positively invariant set can be derived by solving the corresponding optimization problems involving the LMI constraints. Some numerical examples are given to illustrate the effectiveness of the proposed results.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 11\",\"pages\":\"1735-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2166275\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2166275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2166275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文基于Lyapunov稳定性判据和Lagrange乘子方法研究了一类Hopfield神经网络的极限界和正不变集。通过求解线性矩阵不等式(LMI),得到了hnn的极限界和正不变集的超椭圆估计。在此基础上,分析了hnn的唯一平衡点的全局稳定性和不稳定性区域。最后,通过求解相应的涉及LMI约束的优化问题,得到了最终界和正不变集的最精确估计。数值算例说明了所提结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the ultimate bound and positively invariant set for a class of Hopfield networks.

In this paper, we investigate the ultimate bound and positively invariant set for a class of Hopfield neural networks (HNNs) based on the Lyapunov stability criterion and Lagrange multiplier method. It is shown that a hyperelliptic estimate of the ultimate bound and positively invariant set for the HNNs can be calculated by solving a linear matrix inequality (LMI). Furthermore, the global stability of the unique equilibrium and the instability region of the HNNs are analyzed, respectively. Finally, the most accurate estimate of the ultimate bound and positively invariant set can be derived by solving the corresponding optimization problems involving the LMI constraints. Some numerical examples are given to illustrate the effectiveness of the proposed results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信