根据需要生长侧支动脉。

Charles C Oh, Jason D Klein, Raymond Q Migrino, Kent L Thornburg
{"title":"根据需要生长侧支动脉。","authors":"Charles C Oh,&nbsp;Jason D Klein,&nbsp;Raymond Q Migrino,&nbsp;Kent L Thornburg","doi":"10.2174/157489011797377031","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have significantly advanced our understanding of arteriogenesis, raising hope that therapies to increase collateral arterial formation may become important new tools in the treatment of ischemic disease. The most important initiating trigger for arteriogenesis is the marked increase in shear stress which is sensed by the endothelium and leads to characteristic changes. Intracellularly, it was shown that platelet endothelial cell adhesion molecule (PECAM-1) becomes tyrosine-phosphorylated in response to increased shear stress, suggesting a role as a possible mechanoreceptor for dynamic and continual monitoring of shear stress. The signal generated by PECAM-1 leads to the activation of the Rho pathway among others. More than 40 genes have been shown to have a shear stress responsive element. The Rho pathway is activated early and appears to be essential to the arteriogenic response as inhibiting it abolished the effect of fluid shear stress. Overexpression of a Rho pathway member, Actin-binding Rho protein (Abra), led to a 60% increase in collateral perfusion over simple femoral artery occlusion. A patent for the Abra gene has been filed recently. It may be a harbinger of a future where collateral arteries grown on demand may become an effective treatment for ischemic vascular disease.</p>","PeriodicalId":20905,"journal":{"name":"Recent patents on cardiovascular drug discovery","volume":"6 3","pages":"189-98"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/157489011797377031","citationCount":"2","resultStr":"{\"title\":\"Growing collateral arteries on demand.\",\"authors\":\"Charles C Oh,&nbsp;Jason D Klein,&nbsp;Raymond Q Migrino,&nbsp;Kent L Thornburg\",\"doi\":\"10.2174/157489011797377031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have significantly advanced our understanding of arteriogenesis, raising hope that therapies to increase collateral arterial formation may become important new tools in the treatment of ischemic disease. The most important initiating trigger for arteriogenesis is the marked increase in shear stress which is sensed by the endothelium and leads to characteristic changes. Intracellularly, it was shown that platelet endothelial cell adhesion molecule (PECAM-1) becomes tyrosine-phosphorylated in response to increased shear stress, suggesting a role as a possible mechanoreceptor for dynamic and continual monitoring of shear stress. The signal generated by PECAM-1 leads to the activation of the Rho pathway among others. More than 40 genes have been shown to have a shear stress responsive element. The Rho pathway is activated early and appears to be essential to the arteriogenic response as inhibiting it abolished the effect of fluid shear stress. Overexpression of a Rho pathway member, Actin-binding Rho protein (Abra), led to a 60% increase in collateral perfusion over simple femoral artery occlusion. A patent for the Abra gene has been filed recently. It may be a harbinger of a future where collateral arteries grown on demand may become an effective treatment for ischemic vascular disease.</p>\",\"PeriodicalId\":20905,\"journal\":{\"name\":\"Recent patents on cardiovascular drug discovery\",\"volume\":\"6 3\",\"pages\":\"189-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/157489011797377031\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on cardiovascular drug discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/157489011797377031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on cardiovascular drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/157489011797377031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近的研究大大提高了我们对动脉发生的理解,增加侧支动脉形成的疗法可能成为治疗缺血性疾病的重要新工具。动脉发生最重要的触发因素是剪应力的显著增加,剪应力被内皮细胞感知并导致特征性变化。在细胞内,研究表明血小板内皮细胞粘附分子(PECAM-1)随着剪切应力的增加而酪氨酸磷酸化,这表明它可能是一种动态和持续监测剪切应力的机械受体。PECAM-1产生的信号导致Rho通路的激活。超过40个基因已被证明具有剪切应力响应元件。Rho通路被早期激活,似乎对动脉生成反应至关重要,因为抑制它可以消除流体剪切应力的影响。Rho通路成员肌动蛋白结合Rho蛋白(Abra)的过度表达导致单纯性股动脉闭塞时侧支灌注增加60%。Abra基因最近申请了专利。这可能预示着一个未来,按需生长的侧支动脉可能成为缺血性血管疾病的有效治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growing collateral arteries on demand.

Recent studies have significantly advanced our understanding of arteriogenesis, raising hope that therapies to increase collateral arterial formation may become important new tools in the treatment of ischemic disease. The most important initiating trigger for arteriogenesis is the marked increase in shear stress which is sensed by the endothelium and leads to characteristic changes. Intracellularly, it was shown that platelet endothelial cell adhesion molecule (PECAM-1) becomes tyrosine-phosphorylated in response to increased shear stress, suggesting a role as a possible mechanoreceptor for dynamic and continual monitoring of shear stress. The signal generated by PECAM-1 leads to the activation of the Rho pathway among others. More than 40 genes have been shown to have a shear stress responsive element. The Rho pathway is activated early and appears to be essential to the arteriogenic response as inhibiting it abolished the effect of fluid shear stress. Overexpression of a Rho pathway member, Actin-binding Rho protein (Abra), led to a 60% increase in collateral perfusion over simple femoral artery occlusion. A patent for the Abra gene has been filed recently. It may be a harbinger of a future where collateral arteries grown on demand may become an effective treatment for ischemic vascular disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信