{"title":"SaFIN:自适应模糊推理网络。","authors":"Sau Wai Tung, Chai Quek, Cuntai Guan","doi":"10.1109/TNN.2011.2167720","DOIUrl":null,"url":null,"abstract":"<p><p>There are generally two approaches to the design of a neural fuzzy system: 1) design by human experts, and 2) design through a self-organization of the numerical training data. While the former approach is highly subjective, the latter is commonly plagued by one or more of the following major problems: 1) an inconsistent rulebase; 2) the need for prior knowledge such as the number of clusters to be computed; 3) heuristically designed knowledge acquisition methodologies; and 4) the stability-plasticity tradeoff of the system. This paper presents a novel self-organizing neural fuzzy system, named Self-Adaptive Fuzzy Inference Network (SaFIN), to address the aforementioned deficiencies. The proposed SaFIN model employs a new clustering technique referred to as categorical learning-induced partitioning (CLIP), which draws inspiration from the behavioral category learning process demonstrated by humans. By employing the one-pass CLIP, SaFIN is able to incorporate new clusters in each input-output dimension when the existing clusters are not able to give a satisfactory representation of the incoming training data. This not only avoids the need for prior knowledge regarding the number of clusters needed for each input-output dimension, but also allows SaFIN the flexibility to incorporate new knowledge with old knowledge in the system. In addition, the self-automated rule formation mechanism proposed within SaFIN ensures that it obtains a consistent resultant rulebase. Subsequently, the proposed SaFIN model is employed in a series of benchmark simulations to demonstrate its efficiency as a self-organizing neural fuzzy system, and excellent performances have been achieved.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"1928-40"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2167720","citationCount":"51","resultStr":"{\"title\":\"SaFIN: a self-adaptive fuzzy inference network.\",\"authors\":\"Sau Wai Tung, Chai Quek, Cuntai Guan\",\"doi\":\"10.1109/TNN.2011.2167720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are generally two approaches to the design of a neural fuzzy system: 1) design by human experts, and 2) design through a self-organization of the numerical training data. While the former approach is highly subjective, the latter is commonly plagued by one or more of the following major problems: 1) an inconsistent rulebase; 2) the need for prior knowledge such as the number of clusters to be computed; 3) heuristically designed knowledge acquisition methodologies; and 4) the stability-plasticity tradeoff of the system. This paper presents a novel self-organizing neural fuzzy system, named Self-Adaptive Fuzzy Inference Network (SaFIN), to address the aforementioned deficiencies. The proposed SaFIN model employs a new clustering technique referred to as categorical learning-induced partitioning (CLIP), which draws inspiration from the behavioral category learning process demonstrated by humans. By employing the one-pass CLIP, SaFIN is able to incorporate new clusters in each input-output dimension when the existing clusters are not able to give a satisfactory representation of the incoming training data. This not only avoids the need for prior knowledge regarding the number of clusters needed for each input-output dimension, but also allows SaFIN the flexibility to incorporate new knowledge with old knowledge in the system. In addition, the self-automated rule formation mechanism proposed within SaFIN ensures that it obtains a consistent resultant rulebase. Subsequently, the proposed SaFIN model is employed in a series of benchmark simulations to demonstrate its efficiency as a self-organizing neural fuzzy system, and excellent performances have been achieved.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"1928-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2167720\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2167720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2167720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
There are generally two approaches to the design of a neural fuzzy system: 1) design by human experts, and 2) design through a self-organization of the numerical training data. While the former approach is highly subjective, the latter is commonly plagued by one or more of the following major problems: 1) an inconsistent rulebase; 2) the need for prior knowledge such as the number of clusters to be computed; 3) heuristically designed knowledge acquisition methodologies; and 4) the stability-plasticity tradeoff of the system. This paper presents a novel self-organizing neural fuzzy system, named Self-Adaptive Fuzzy Inference Network (SaFIN), to address the aforementioned deficiencies. The proposed SaFIN model employs a new clustering technique referred to as categorical learning-induced partitioning (CLIP), which draws inspiration from the behavioral category learning process demonstrated by humans. By employing the one-pass CLIP, SaFIN is able to incorporate new clusters in each input-output dimension when the existing clusters are not able to give a satisfactory representation of the incoming training data. This not only avoids the need for prior knowledge regarding the number of clusters needed for each input-output dimension, but also allows SaFIN the flexibility to incorporate new knowledge with old knowledge in the system. In addition, the self-automated rule formation mechanism proposed within SaFIN ensures that it obtains a consistent resultant rulebase. Subsequently, the proposed SaFIN model is employed in a series of benchmark simulations to demonstrate its efficiency as a self-organizing neural fuzzy system, and excellent performances have been achieved.