脑功能分割的非参数层次贝叶斯模型。

Danial Lashkari, Ramesh Sridharan, Edward Vul, Po-Jang Hsieh, Nancy Kanwisher, Polina Golland
{"title":"脑功能分割的非参数层次贝叶斯模型。","authors":"Danial Lashkari, Ramesh Sridharan, Edward Vul, Po-Jang Hsieh, Nancy Kanwisher, Polina Golland","doi":"10.1109/CVPRW.2010.5543434","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli.</p>","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":" ","pages":"15-22"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153957/pdf/nihms-272409.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation.\",\"authors\":\"Danial Lashkari, Ramesh Sridharan, Edward Vul, Po-Jang Hsieh, Nancy Kanwisher, Polina Golland\",\"doi\":\"10.1109/CVPRW.2010.5543434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli.</p>\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\" \",\"pages\":\"15-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153957/pdf/nihms-272409.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2010.5543434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2010.5543434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种方法,用于无监督分析功能脑图像,学习功能反应的群体水平模式。我们的算法基于生成模型,该模型包括两个主要层。在较低的层次上,我们将大脑对每个刺激的功能性反应表示为二元激活变量。在下一层,我们在所有主题的激活变量集上定义一个先验。我们使用分层狄利克雷过程作为先验,以便同时学习跨组共享的响应模式,并估计数据支持的这些模式的数量。基于该模型的推理能够自动发现和表征功能信号中的显著和一致模式。我们将我们的方法应用于一项研究的数据,该研究探索了视觉皮层对一系列图像的反应。所发现的激活概况对应于对许多图像类别的选择性,如面孔、身体和场景。更一般地说,在捕捉刺激空间中的类别结构方面,我们的结果似乎优于其他数据驱动方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation.

Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation.

Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation.

Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation.

We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信