{"title":"Dirichlet边界条件下反应-扩散神经网络的无源性和稳定性分析。","authors":"Jin-Liang Wang, Huai-Ning Wu, Lei Guo","doi":"10.1109/TNN.2011.2170096","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with the passivity and stability problems of reaction-diffusion neural networks (RDNNs) in which the input and output variables are varied with the time and space variables. By utilizing the Lyapunov functional method combined with the inequality techniques, some sufficient conditions ensuring the passivity and global exponential stability are derived. Furthermore, when the parameter uncertainties appear in RDNNs, several criteria for robust passivity and robust global exponential stability are also presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2105-16"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2170096","citationCount":"92","resultStr":"{\"title\":\"Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions.\",\"authors\":\"Jin-Liang Wang, Huai-Ning Wu, Lei Guo\",\"doi\":\"10.1109/TNN.2011.2170096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper is concerned with the passivity and stability problems of reaction-diffusion neural networks (RDNNs) in which the input and output variables are varied with the time and space variables. By utilizing the Lyapunov functional method combined with the inequality techniques, some sufficient conditions ensuring the passivity and global exponential stability are derived. Furthermore, when the parameter uncertainties appear in RDNNs, several criteria for robust passivity and robust global exponential stability are also presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"2105-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2170096\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2170096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2170096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions.
This paper is concerned with the passivity and stability problems of reaction-diffusion neural networks (RDNNs) in which the input and output variables are varied with the time and space variables. By utilizing the Lyapunov functional method combined with the inequality techniques, some sufficient conditions ensuring the passivity and global exponential stability are derived. Furthermore, when the parameter uncertainties appear in RDNNs, several criteria for robust passivity and robust global exponential stability are also presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.