Dirichlet边界条件下反应-扩散神经网络的无源性和稳定性分析。

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-10-14 DOI:10.1109/TNN.2011.2170096
Jin-Liang Wang, Huai-Ning Wu, Lei Guo
{"title":"Dirichlet边界条件下反应-扩散神经网络的无源性和稳定性分析。","authors":"Jin-Liang Wang,&nbsp;Huai-Ning Wu,&nbsp;Lei Guo","doi":"10.1109/TNN.2011.2170096","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with the passivity and stability problems of reaction-diffusion neural networks (RDNNs) in which the input and output variables are varied with the time and space variables. By utilizing the Lyapunov functional method combined with the inequality techniques, some sufficient conditions ensuring the passivity and global exponential stability are derived. Furthermore, when the parameter uncertainties appear in RDNNs, several criteria for robust passivity and robust global exponential stability are also presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2105-16"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2170096","citationCount":"92","resultStr":"{\"title\":\"Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions.\",\"authors\":\"Jin-Liang Wang,&nbsp;Huai-Ning Wu,&nbsp;Lei Guo\",\"doi\":\"10.1109/TNN.2011.2170096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper is concerned with the passivity and stability problems of reaction-diffusion neural networks (RDNNs) in which the input and output variables are varied with the time and space variables. By utilizing the Lyapunov functional method combined with the inequality techniques, some sufficient conditions ensuring the passivity and global exponential stability are derived. Furthermore, when the parameter uncertainties appear in RDNNs, several criteria for robust passivity and robust global exponential stability are also presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 12\",\"pages\":\"2105-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2170096\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2170096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2170096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92

摘要

研究了输入和输出随时间和空间变量变化的反应扩散神经网络的无源性和稳定性问题。利用Lyapunov泛函方法结合不等式技术,得到了保证系统无源性和全局指数稳定性的充分条件。此外,当rdnn中出现参数不确定性时,还给出了鲁棒无源性和鲁棒全局指数稳定性的若干准则。最后,给出了一个数值算例来说明所提准则的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions.

This paper is concerned with the passivity and stability problems of reaction-diffusion neural networks (RDNNs) in which the input and output variables are varied with the time and space variables. By utilizing the Lyapunov functional method combined with the inequality techniques, some sufficient conditions ensuring the passivity and global exponential stability are derived. Furthermore, when the parameter uncertainties appear in RDNNs, several criteria for robust passivity and robust global exponential stability are also presented. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信