重复分数测量数据的半参数贝叶斯推理。

IF 0.6 Q4 STATISTICS & PROBABILITY
Chilean Journal of Statistics Pub Date : 2010-04-01
Ying Yang, Peter Müller, Gary L Rosner
{"title":"重复分数测量数据的半参数贝叶斯推理。","authors":"Ying Yang,&nbsp;Peter Müller,&nbsp;Gary L Rosner","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss inference for repeated fractional data, with outcomes between 0 to 1, including positive probability masses on 0 and 1. The point masses at the boundaries prevent the routine use of logit and other commonly used transformations of (0, 1) data. We introduce a model augmentation with latent variables that allow for the desired positive probability at 0 and 1 in the model. A linear mixed effect model is imposed on the latent variables. We propose a Bayesian semiparametric model for the random effects distribution. Specifically, we use a Polya tree prior for the unknown random effects distribution. The proposed model can capture possible multimodality and skewness of random effect distribution. We discuss implementation of posterior inference by Markov chain Monte Carlo simulation. The proposed model is illustrated by a simulation study and a cancer study in dogs.</p>","PeriodicalId":54032,"journal":{"name":"Chilean Journal of Statistics","volume":"1 1","pages":"59-74"},"PeriodicalIF":0.6000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150508/pdf/nihms217175.pdf","citationCount":"0","resultStr":"{\"title\":\"Semiparametric Bayesian inference for repeated fractional measurement data.\",\"authors\":\"Ying Yang,&nbsp;Peter Müller,&nbsp;Gary L Rosner\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We discuss inference for repeated fractional data, with outcomes between 0 to 1, including positive probability masses on 0 and 1. The point masses at the boundaries prevent the routine use of logit and other commonly used transformations of (0, 1) data. We introduce a model augmentation with latent variables that allow for the desired positive probability at 0 and 1 in the model. A linear mixed effect model is imposed on the latent variables. We propose a Bayesian semiparametric model for the random effects distribution. Specifically, we use a Polya tree prior for the unknown random effects distribution. The proposed model can capture possible multimodality and skewness of random effect distribution. We discuss implementation of posterior inference by Markov chain Monte Carlo simulation. The proposed model is illustrated by a simulation study and a cancer study in dogs.</p>\",\"PeriodicalId\":54032,\"journal\":{\"name\":\"Chilean Journal of Statistics\",\"volume\":\"1 1\",\"pages\":\"59-74\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150508/pdf/nihms217175.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chilean Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chilean Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了重复分数数据的推理,结果在0到1之间,包括0和1上的正概率质量。边界处的点质量阻止了对(0,1)数据进行logit和其他常用变换的常规使用。我们引入了一个带有潜在变量的模型增强,它允许模型在0和1处的期望正概率。对潜在变量施加线性混合效应模型。我们提出了随机效应分布的贝叶斯半参数模型。具体来说,我们使用Polya树先验来处理未知的随机效应分布。该模型能够捕捉随机效应分布可能存在的多模态和偏态。讨论了用马尔可夫链蒙特卡罗模拟实现后验推理。所提出的模型通过模拟研究和狗的癌症研究来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semiparametric Bayesian inference for repeated fractional measurement data.

Semiparametric Bayesian inference for repeated fractional measurement data.

Semiparametric Bayesian inference for repeated fractional measurement data.

Semiparametric Bayesian inference for repeated fractional measurement data.

We discuss inference for repeated fractional data, with outcomes between 0 to 1, including positive probability masses on 0 and 1. The point masses at the boundaries prevent the routine use of logit and other commonly used transformations of (0, 1) data. We introduce a model augmentation with latent variables that allow for the desired positive probability at 0 and 1 in the model. A linear mixed effect model is imposed on the latent variables. We propose a Bayesian semiparametric model for the random effects distribution. Specifically, we use a Polya tree prior for the unknown random effects distribution. The proposed model can capture possible multimodality and skewness of random effect distribution. We discuss implementation of posterior inference by Markov chain Monte Carlo simulation. The proposed model is illustrated by a simulation study and a cancer study in dogs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chilean Journal of Statistics
Chilean Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.40
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信