{"title":"突变体α-肌动蛋白-4相关足细胞损伤","authors":"Andrey V Cybulsky, Chris R J Kennedy","doi":"10.1155/2011/563128","DOIUrl":null,"url":null,"abstract":"<p><p>Focal segmental glomerulosclerosis (FSGS) is an important cause of proteinuria and nephrotic syndrome in humans. The pathogenesis of FSGS may be associated with glomerular visceral epithelial cell (GEC; podocyte) injury, leading to apoptosis, detachment, and \"podocytopenia\", followed by glomerulosclerosis. Mutations in α-actinin-4 are associated with FSGS in humans. In cultured GECs, α-actinin-4 mediates adhesion and cytoskeletal dynamics. FSGS-associated α-actinin-4 mutants show increased binding to actin filaments, compared with the wild-type protein. Expression of an α-actinin-4 mutant in mouse podocytes in vivo resulted in proteinuric FSGS. GECs that express mutant α-actinin-4 show defective spreading and motility, and such abnormalities could alter the mechanical properties of the podocyte, contribute to cytoskeletal disruption, and lead to injury. The potential for mutant α-actinin-4 to injure podocytes is also suggested by the characteristics of this mutant protein to form microaggregates, undergo ubiquitination, impair the ubiquitin-proteasome system, enhance endoplasmic reticulum stress, and exacerbate apoptosis.</p>","PeriodicalId":89176,"journal":{"name":"Journal of signal transduction","volume":"2011 ","pages":"563128"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2011/563128","citationCount":"18","resultStr":"{\"title\":\"Podocyte Injury Associated with Mutant α-Actinin-4.\",\"authors\":\"Andrey V Cybulsky, Chris R J Kennedy\",\"doi\":\"10.1155/2011/563128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Focal segmental glomerulosclerosis (FSGS) is an important cause of proteinuria and nephrotic syndrome in humans. The pathogenesis of FSGS may be associated with glomerular visceral epithelial cell (GEC; podocyte) injury, leading to apoptosis, detachment, and \\\"podocytopenia\\\", followed by glomerulosclerosis. Mutations in α-actinin-4 are associated with FSGS in humans. In cultured GECs, α-actinin-4 mediates adhesion and cytoskeletal dynamics. FSGS-associated α-actinin-4 mutants show increased binding to actin filaments, compared with the wild-type protein. Expression of an α-actinin-4 mutant in mouse podocytes in vivo resulted in proteinuric FSGS. GECs that express mutant α-actinin-4 show defective spreading and motility, and such abnormalities could alter the mechanical properties of the podocyte, contribute to cytoskeletal disruption, and lead to injury. The potential for mutant α-actinin-4 to injure podocytes is also suggested by the characteristics of this mutant protein to form microaggregates, undergo ubiquitination, impair the ubiquitin-proteasome system, enhance endoplasmic reticulum stress, and exacerbate apoptosis.</p>\",\"PeriodicalId\":89176,\"journal\":{\"name\":\"Journal of signal transduction\",\"volume\":\"2011 \",\"pages\":\"563128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2011/563128\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of signal transduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/563128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of signal transduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/563128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/7/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Podocyte Injury Associated with Mutant α-Actinin-4.
Focal segmental glomerulosclerosis (FSGS) is an important cause of proteinuria and nephrotic syndrome in humans. The pathogenesis of FSGS may be associated with glomerular visceral epithelial cell (GEC; podocyte) injury, leading to apoptosis, detachment, and "podocytopenia", followed by glomerulosclerosis. Mutations in α-actinin-4 are associated with FSGS in humans. In cultured GECs, α-actinin-4 mediates adhesion and cytoskeletal dynamics. FSGS-associated α-actinin-4 mutants show increased binding to actin filaments, compared with the wild-type protein. Expression of an α-actinin-4 mutant in mouse podocytes in vivo resulted in proteinuric FSGS. GECs that express mutant α-actinin-4 show defective spreading and motility, and such abnormalities could alter the mechanical properties of the podocyte, contribute to cytoskeletal disruption, and lead to injury. The potential for mutant α-actinin-4 to injure podocytes is also suggested by the characteristics of this mutant protein to form microaggregates, undergo ubiquitination, impair the ubiquitin-proteasome system, enhance endoplasmic reticulum stress, and exacerbate apoptosis.