基于GTLS技术和等式约束的局部模型网络非线性辨识。

IEEE transactions on neural networks Pub Date : 2011-09-01 Epub Date: 2011-07-22 DOI:10.1109/TNN.2011.2159309
Christoph Hametner, Stefan Jakubek
{"title":"基于GTLS技术和等式约束的局部模型网络非线性辨识。","authors":"Christoph Hametner,&nbsp;Stefan Jakubek","doi":"10.1109/TNN.2011.2159309","DOIUrl":null,"url":null,"abstract":"<p><p>Local model networks approximate a nonlinear system through multiple local models fitted within a partition space. The main advantage of this approach is that the identification of complex nonlinear processes is alleviated by the integration of structured knowledge about the process. This paper extends these concepts by the integration of quantitative process knowledge into the identification procedure. Quantitative knowledge describes explicit dependences between inputs and outputs and is integrated in the parameter estimation process by means of equality constraints. For this purpose, a constrained generalized total least squares algorithm for local parameter estimation is presented. Furthermore, the problem of proper integration of constraints in the partitioning process is treated where an expectation-maximization procedure is combined with constrained parameter estimation. The benefits and the applicability of the proposed concepts are demonstrated by means of two illustrative examples and a practical application using real measurement data.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 9","pages":"1406-18"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2159309","citationCount":"28","resultStr":"{\"title\":\"Nonlinear identification with local model networks using GTLS techniques and equality constraints.\",\"authors\":\"Christoph Hametner,&nbsp;Stefan Jakubek\",\"doi\":\"10.1109/TNN.2011.2159309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Local model networks approximate a nonlinear system through multiple local models fitted within a partition space. The main advantage of this approach is that the identification of complex nonlinear processes is alleviated by the integration of structured knowledge about the process. This paper extends these concepts by the integration of quantitative process knowledge into the identification procedure. Quantitative knowledge describes explicit dependences between inputs and outputs and is integrated in the parameter estimation process by means of equality constraints. For this purpose, a constrained generalized total least squares algorithm for local parameter estimation is presented. Furthermore, the problem of proper integration of constraints in the partitioning process is treated where an expectation-maximization procedure is combined with constrained parameter estimation. The benefits and the applicability of the proposed concepts are demonstrated by means of two illustrative examples and a practical application using real measurement data.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 9\",\"pages\":\"1406-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2159309\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2159309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2159309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/7/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

局部模型网络通过在一个分区空间内拟合多个局部模型来逼近非线性系统。该方法的主要优点是通过集成有关过程的结构化知识来减轻复杂非线性过程的识别。本文通过将定量过程知识整合到识别过程中来扩展这些概念。定量知识描述了输入和输出之间的显式依赖关系,并通过等式约束集成在参数估计过程中。为此,提出了一种局部参数估计的约束广义总最小二乘算法。在此基础上,将期望最大化过程与约束参数估计相结合,讨论了分区过程中约束的合理积分问题。通过两个示例和使用实际测量数据的实际应用,证明了所提出概念的优点和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear identification with local model networks using GTLS techniques and equality constraints.

Local model networks approximate a nonlinear system through multiple local models fitted within a partition space. The main advantage of this approach is that the identification of complex nonlinear processes is alleviated by the integration of structured knowledge about the process. This paper extends these concepts by the integration of quantitative process knowledge into the identification procedure. Quantitative knowledge describes explicit dependences between inputs and outputs and is integrated in the parameter estimation process by means of equality constraints. For this purpose, a constrained generalized total least squares algorithm for local parameter estimation is presented. Furthermore, the problem of proper integration of constraints in the partitioning process is treated where an expectation-maximization procedure is combined with constrained parameter estimation. The benefits and the applicability of the proposed concepts are demonstrated by means of two illustrative examples and a practical application using real measurement data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信