一种基于小波的连续动态心电记录波形描述与分类算法。

Computing in cardiology Pub Date : 2010-01-01
L Johannesen, Usl Grove, Js Sørensen, Ml Schmidt, J-P Couderc, C Graff
{"title":"一种基于小波的连续动态心电记录波形描述与分类算法。","authors":"L Johannesen,&nbsp;Usl Grove,&nbsp;Js Sørensen,&nbsp;Ml Schmidt,&nbsp;J-P Couderc,&nbsp;C Graff","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative analysis of the electrocardiogram (ECG) requires delineation and classification of the individual ECG wave patterns. We propose a wavelet-based waveform classifier that uses the fiducial points identified by a delineation algorithm. For validation of the algorithm, manually annotated ECG records from the QT database (Physionet) were used. ECG waveform classification accuracies were: 85.6% (P-wave), 89.7% (QRS complex), 92.8% (T-wave) and 76.9% (U-wave). The proposed classification method shows that it is possible to classify waveforms based on the points obtained during delineation. This approach can be used to automatically classify wave patterns in long-term ECG recordings such as 24-hour Holter recordings.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"37 5738139","pages":"979-982"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139228/pdf/nihms302606.pdf","citationCount":"0","resultStr":"{\"title\":\"A Wavelet-Based Algorithm for Delineation and Classification of Wave Patterns in Continuous Holter ECG Recordings.\",\"authors\":\"L Johannesen,&nbsp;Usl Grove,&nbsp;Js Sørensen,&nbsp;Ml Schmidt,&nbsp;J-P Couderc,&nbsp;C Graff\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative analysis of the electrocardiogram (ECG) requires delineation and classification of the individual ECG wave patterns. We propose a wavelet-based waveform classifier that uses the fiducial points identified by a delineation algorithm. For validation of the algorithm, manually annotated ECG records from the QT database (Physionet) were used. ECG waveform classification accuracies were: 85.6% (P-wave), 89.7% (QRS complex), 92.8% (T-wave) and 76.9% (U-wave). The proposed classification method shows that it is possible to classify waveforms based on the points obtained during delineation. This approach can be used to automatically classify wave patterns in long-term ECG recordings such as 24-hour Holter recordings.</p>\",\"PeriodicalId\":72683,\"journal\":{\"name\":\"Computing in cardiology\",\"volume\":\"37 5738139\",\"pages\":\"979-982\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139228/pdf/nihms302606.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心电图(ECG)的定量分析需要对单个心电波形进行描述和分类。我们提出了一种基于小波的波形分类器,它使用由描绘算法识别的基点。为了验证算法,使用QT数据库(Physionet)中人工注释的心电记录。心电波形分类准确率分别为:p波85.6%、QRS复合体89.7%、t波92.8%、u波76.9%。提出的分类方法表明,基于圈定过程中获得的点对波形进行分类是可能的。该方法可用于长期心电图记录(如24小时动态心电图记录)中的波形自动分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Wavelet-Based Algorithm for Delineation and Classification of Wave Patterns in Continuous Holter ECG Recordings.

Quantitative analysis of the electrocardiogram (ECG) requires delineation and classification of the individual ECG wave patterns. We propose a wavelet-based waveform classifier that uses the fiducial points identified by a delineation algorithm. For validation of the algorithm, manually annotated ECG records from the QT database (Physionet) were used. ECG waveform classification accuracies were: 85.6% (P-wave), 89.7% (QRS complex), 92.8% (T-wave) and 76.9% (U-wave). The proposed classification method shows that it is possible to classify waveforms based on the points obtained during delineation. This approach can be used to automatically classify wave patterns in long-term ECG recordings such as 24-hour Holter recordings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信