{"title":"采用小型多换向流分析装置对自来水中次氯酸盐光度测定的环境友好型方法。","authors":"Sivanildo S Borges, Boaventura F Reis","doi":"10.1155/2011/463286","DOIUrl":null,"url":null,"abstract":"<p><p>A photometric procedure for the determination of ClO(-) in tap water employing a miniaturized multicommuted flow analysis setup and an LED-based photometer is described. The analytical procedure was implemented using leucocrystal violet (LCV; 4,4',4''-methylidynetris (N,N-dimethylaniline), C(25)H(31)N(3)) as a chromogenic reagent. Solenoid micropumps employed for solutions propelling were assembled together with the photometer in order to compose a compact unit of small dimensions. After control variables optimization, the system was applied for the determination of ClO(-) in samples of tap water, and aiming accuracy assessment samples were also analyzed using an independent method. Applying the paired t-test between results obtained using both methods, no significant difference at the 95% confidence level was observed. Other useful features include low reagent consumption, 2.4 μg of LCV per determination, a linear response ranging from 0.02 up to 2.0 mg L(-1) ClO(-), a relative standard deviation of 1.0% (n = 11) for samples containing 0.2 mg L(-1) ClO(-), a detection limit of 6.0 μg L(-1) ClO(-), a sampling throughput of 84 determinations per hour, and a waste generation of 432 μL per determination.</p>","PeriodicalId":15248,"journal":{"name":"Journal of Automated Methods & Management in Chemistry","volume":"2011 ","pages":"463286"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2011/463286","citationCount":"5","resultStr":"{\"title\":\"An environmental friendly procedure for photometric determination of hypochlorite in tap water employing a miniaturized multicommuted flow analysis setup.\",\"authors\":\"Sivanildo S Borges, Boaventura F Reis\",\"doi\":\"10.1155/2011/463286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A photometric procedure for the determination of ClO(-) in tap water employing a miniaturized multicommuted flow analysis setup and an LED-based photometer is described. The analytical procedure was implemented using leucocrystal violet (LCV; 4,4',4''-methylidynetris (N,N-dimethylaniline), C(25)H(31)N(3)) as a chromogenic reagent. Solenoid micropumps employed for solutions propelling were assembled together with the photometer in order to compose a compact unit of small dimensions. After control variables optimization, the system was applied for the determination of ClO(-) in samples of tap water, and aiming accuracy assessment samples were also analyzed using an independent method. Applying the paired t-test between results obtained using both methods, no significant difference at the 95% confidence level was observed. Other useful features include low reagent consumption, 2.4 μg of LCV per determination, a linear response ranging from 0.02 up to 2.0 mg L(-1) ClO(-), a relative standard deviation of 1.0% (n = 11) for samples containing 0.2 mg L(-1) ClO(-), a detection limit of 6.0 μg L(-1) ClO(-), a sampling throughput of 84 determinations per hour, and a waste generation of 432 μL per determination.</p>\",\"PeriodicalId\":15248,\"journal\":{\"name\":\"Journal of Automated Methods & Management in Chemistry\",\"volume\":\"2011 \",\"pages\":\"463286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2011/463286\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automated Methods & Management in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/463286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automated Methods & Management in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/463286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/5/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
An environmental friendly procedure for photometric determination of hypochlorite in tap water employing a miniaturized multicommuted flow analysis setup.
A photometric procedure for the determination of ClO(-) in tap water employing a miniaturized multicommuted flow analysis setup and an LED-based photometer is described. The analytical procedure was implemented using leucocrystal violet (LCV; 4,4',4''-methylidynetris (N,N-dimethylaniline), C(25)H(31)N(3)) as a chromogenic reagent. Solenoid micropumps employed for solutions propelling were assembled together with the photometer in order to compose a compact unit of small dimensions. After control variables optimization, the system was applied for the determination of ClO(-) in samples of tap water, and aiming accuracy assessment samples were also analyzed using an independent method. Applying the paired t-test between results obtained using both methods, no significant difference at the 95% confidence level was observed. Other useful features include low reagent consumption, 2.4 μg of LCV per determination, a linear response ranging from 0.02 up to 2.0 mg L(-1) ClO(-), a relative standard deviation of 1.0% (n = 11) for samples containing 0.2 mg L(-1) ClO(-), a detection limit of 6.0 μg L(-1) ClO(-), a sampling throughput of 84 determinations per hour, and a waste generation of 432 μL per determination.