混合时滞离散随机马尔可夫跳变神经网络的无源性分析。

IEEE transactions on neural networks Pub Date : 2011-10-01 Epub Date: 2011-08-12 DOI:10.1109/TNN.2011.2163203
Zheng-Guang Wu, Peng Shi, Hongye Su, Jian Chu
{"title":"混合时滞离散随机马尔可夫跳变神经网络的无源性分析。","authors":"Zheng-Guang Wu,&nbsp;Peng Shi,&nbsp;Hongye Su,&nbsp;Jian Chu","doi":"10.1109/TNN.2011.2163203","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, passivity analysis is conducted for discrete-time stochastic neural networks with both Markovian jumping parameters and mixed time delays. The mixed time delays consist of both discrete and distributed delays. The Markov chain in the underlying neural networks is finite piecewise homogeneous. By introducing a Lyapunov functional that accounts for the mixed time delays, a delay-dependent passivity condition is derived in terms of the linear matrix inequality approach. The case of Markov chain with partially unknown transition probabilities is also considered. All the results presented depend upon not only discrete delay but also distributed delay. A numerical example is included to demonstrate the effectiveness of the proposed methods.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 10","pages":"1566-75"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2163203","citationCount":"364","resultStr":"{\"title\":\"Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays.\",\"authors\":\"Zheng-Guang Wu,&nbsp;Peng Shi,&nbsp;Hongye Su,&nbsp;Jian Chu\",\"doi\":\"10.1109/TNN.2011.2163203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, passivity analysis is conducted for discrete-time stochastic neural networks with both Markovian jumping parameters and mixed time delays. The mixed time delays consist of both discrete and distributed delays. The Markov chain in the underlying neural networks is finite piecewise homogeneous. By introducing a Lyapunov functional that accounts for the mixed time delays, a delay-dependent passivity condition is derived in terms of the linear matrix inequality approach. The case of Markov chain with partially unknown transition probabilities is also considered. All the results presented depend upon not only discrete delay but also distributed delay. A numerical example is included to demonstrate the effectiveness of the proposed methods.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":\"22 10\",\"pages\":\"1566-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2163203\",\"citationCount\":\"364\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2163203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2163203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/8/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 364

摘要

本文对具有马尔可夫跳变参数和混合时滞的离散随机神经网络进行了无源分析。混合时延包括离散时延和分布时延。底层神经网络中的马尔可夫链是有限分段齐次的。通过引入一个考虑混合时滞的Lyapunov泛函,利用线性矩阵不等式方法导出了一个与时滞相关的无源条件。同时考虑了转移概率部分未知的马尔可夫链的情况。所有的结果不仅依赖于离散延迟,而且依赖于分布延迟。算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays.

In this paper, passivity analysis is conducted for discrete-time stochastic neural networks with both Markovian jumping parameters and mixed time delays. The mixed time delays consist of both discrete and distributed delays. The Markov chain in the underlying neural networks is finite piecewise homogeneous. By introducing a Lyapunov functional that accounts for the mixed time delays, a delay-dependent passivity condition is derived in terms of the linear matrix inequality approach. The case of Markov chain with partially unknown transition probabilities is also considered. All the results presented depend upon not only discrete delay but also distributed delay. A numerical example is included to demonstrate the effectiveness of the proposed methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信