基于神经网络的预测区间及其新进展综述。

IEEE transactions on neural networks Pub Date : 2011-09-01 Epub Date: 2011-07-29 DOI:10.1109/TNN.2011.2162110
Abbas Khosravi, Saeid Nahavandi, Doug Creighton, Amir F Atiya
{"title":"基于神经网络的预测区间及其新进展综述。","authors":"Abbas Khosravi,&nbsp;Saeid Nahavandi,&nbsp;Doug Creighton,&nbsp;Amir F Atiya","doi":"10.1109/TNN.2011.2162110","DOIUrl":null,"url":null,"abstract":"<p><p>This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2162110","citationCount":"481","resultStr":"{\"title\":\"Comprehensive review of neural network-based prediction intervals and new advances.\",\"authors\":\"Abbas Khosravi,&nbsp;Saeid Nahavandi,&nbsp;Doug Creighton,&nbsp;Amir F Atiya\",\"doi\":\"10.1109/TNN.2011.2162110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.</p>\",\"PeriodicalId\":13434,\"journal\":{\"name\":\"IEEE transactions on neural networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TNN.2011.2162110\",\"citationCount\":\"481\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TNN.2011.2162110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2162110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/7/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 481

摘要

本文评价了文献中提出的用于神经网络点预测的预测区间(pi)构建的四种主要技术。回顾了delta、贝叶斯、bootstrap和mean-variance estimation (MVE)方法,并比较了它们在生成高质量pi方面的性能。提出了基于pi的度量,并应用于对每种方法的性能进行客观和定量的评估。选择12个合成和现实世界的案例研究,用于检查每种方法的PI构建性能。比较是根据生成的pi的质量、结果的可重复性、计算要求和pi在数据不确定性方面的可变性进行的。研究结果表明:δ和贝叶斯方法在质量和可重复性方面是最好的;MVE和bootstrap方法在低计算量和pi宽度可变性方面是最好的。本文还引入了pi组合的概念,提出了一种利用传统pi生成组合pi的新方法。采用遗传算法在两组约束条件下,通过最小化基于pi的代价函数来调整组合器参数。结果表明,组合方法得到的pi质量明显优于单独方法得到的pi质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive review of neural network-based prediction intervals and new advances.

This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信